Current perspectives on acidogenic fermentation to produce volatile fatty acids from waste

Author:

Ramos-Suarez MariaORCID,Zhang YueORCID,Outram VictoriaORCID

Abstract

AbstractVolatile fatty acids (VFAs) are key platform chemicals used in a multitude of industries including chemicals, pharmaceuticals, food and agriculture. The current route for VFA production is petrochemical based. VFAs can be biologically produced using organic wastes as substrate, therefore directly contributing to a sustainable economy. This process is commonly known as acidogenic fermentation (AF). This review explores the current research on the development of AF processes optimized for VFA production. Three process steps are considered: feedstock pretreatment, fermentation, and primary product recovery with a focus on in situ recovery. Pretreatment is required for recalcitrant feedstocks, especially lignocellulosic substrates. Different pretreatment techniques for AF application have not been studied in depth. The operational parameters of AF (temperature, pH, hydraulic retention time, substrate concentration, etc.) highly influence microbial activity, VFA yields and product distribution. Optimum conditions are ultimately dependent on substrate composition, however, there is indication that certain operational ranges are beneficial for most feedstocks. VFA recovery and purification are necessary for chemical applications. When recovery is performed in situ, it can help relieve product-induced inhibition and keep alkalinity levels stable enabling further waste degradation. Many techniques have been tested, but none are directly compatible with the fermentation conditions tested. Bio-VFAs have the potential to aid in developing a circular economy, but further development is required. Processes need to be developed with the product market in mind, considering both process integration and systematic process optimization.

Funder

Engineering and Physical Sciences Research Council

Newton Fund

Publisher

Springer Science and Business Media LLC

Subject

Pollution,Waste Management and Disposal,Applied Microbiology and Biotechnology,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3