Skip to main content

Advertisement

Log in

Identification of the efficacy of parentage testing based on bi-allelic autosomal single nucleotide polymorphism markers in Taiwanese population

  • Original Article
  • Published:
Forensic Science, Medicine and Pathology Aims and scope Submit manuscript

Abstract

Parentage testing is crucial for forensic DNA analysis, using short tandem repeats (STRs). Single nucleotide polymorphisms (SNPs) with high minor allele frequency (MAF) are promising for human identification. This study aimed to develop SNP markers for parentage testing in the Taiwanese population and compare their accuracy with STRs. The TPMv1 SNP microarray (714,457 SNPs) was used to screen 180,000 Taiwanese individuals and analyze the SNP data using PLINK. After quality control, allelic distribution, and MAF considerations, a set of SNPs with significant inheritance information was selected. Parentage testing was conducted on 355 single parent-child pairs using both STRs and SNPs, employing three kinship algorithms: identity by descent, kinship-based inference for genome-wide association studies, and the combined paternity index/probability of paternity (CPI/PP). An Affymetrix signature probe for kinship testing (ASP) was also used. Based on the quality control and selection criteria, 176 SNPs with MAF > 0.4995 were selected from the Taiwanese population. The CPI/PP results calculated using SNPs were consistent with the STR results. The accuracy of the SNPs used in the single-parent-child parentage testing was > 99.99%. The set of 176 SNPs had a higher identification rate in the single parent-child parentage test than in the ASP. The CPI/PP value calculated using 176 SNPs was also more accurate than that calculated using ASP. Our findings suggest that these 176 SNPs could be used for single-parent-child parentage identification in the Taiwanese population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

All data related to this article have included in here.

References

  1. Williams GS. Parentage testing. In: Byard R, Payne-James J, Corey T, Henderson C, editors. The encyclopedia of forensic & legal medicine. London, United Kingdom: Elsevier Ltd.; 2005.

    Google Scholar 

  2. Fung WK, Hu YQ. Statistical analysis. In: Byard R, Payne-James J, Corey T, Henderson C, editors. The encyclopedia of forensic & legal medicine. London, United Kingdom: Elsevier Ltd.; 2005.

    Google Scholar 

  3. Roper SM, Tatum OL. Forensic aspects of DNA-based human identity testing. J Forensic Nurs. 2008;4:150–6.

    PubMed  Google Scholar 

  4. Dash HR, Shrivastava P, Das S. Amplification of autosomal STR markers by multiplex PCR. In: Principles and practices of DNA analysis: a laboratory manual for forensic DNA typing. Springer Protocols Handbooks. New York: Humana Press; 2020.

  5. Kayser M, de Knijff P. Improving human forensics through advances in genetics, genomics and molecular biology. Nat Rev Genet. 2011;12:179–92.

    Article  CAS  PubMed  Google Scholar 

  6. Phillips C, García-Magariños M, Salas A, Carracedo Á, Lareu MV. SNPs as supplements in simple kinship analysis or as core markers in distant pairwise relationship tests: when do SNPs add value or replace well-established and powerful STR tests ? Transfus Med Hemother. 2012;39:202–10.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Butler JM. Genetics and genomics of core short tandem repeat loci used in human identity testing. J Forensic Sci. 2006;51:253–65.

    Article  CAS  PubMed  Google Scholar 

  8. Giardina E, Spinella A, Novelli G. Past, present and future of forensic DNA typing. Nanomedicine (Lond). 2011;6(2):257–70.

    Article  CAS  PubMed  Google Scholar 

  9. Jordan D, Mills D. Past, present, and future of DNA typing for analyzing human and non-human forensic samples. Front Ecol Evol. 2021;9: 646130.

    Article  Google Scholar 

  10. Lee JC, Hsieh HM. The algorithmic logic of parentage testing (in Traditional Chinese). Taipei: National Taiwan University Press; 2008.

    Google Scholar 

  11. Pu CE. The development of parentage DNA identification in Taiwan. TAF Newsletter. 2012;4. https://www.taftw.org.tw/report/2012/04/DNA/ . Accessed 25 Oct 2023.

  12. Oldt RF, Kanthaswamy S. Expanded CODIS STR allele frequencies–evidence for the irrelevance of race-based DNA databases. Leg Med (Tokyo). 2020;42: 101642.

    Article  CAS  PubMed  Google Scholar 

  13. Lai Y, Sun F. The relationship between microsatellite slippage mutation rate and the number of repeat units. Mol Biol Evol. 2003;20:2123–31.

    Article  CAS  PubMed  Google Scholar 

  14. Phillips C, Fondevila M, García-Magariños M, Rodriguez A, Salas A, Carracedo Á, et al. Resolving relationship tests that show ambiguous STR results using autosomal SNPs as supplementary markers. Forensic Sci Int Genet. 2008;2:198–204.

    Article  CAS  PubMed  Google Scholar 

  15. Børsting C, Sanchez JJ, Hansen HE, Hansen AJ, Bruun HQ, Morling N. Performance of the SNPforID 52 SNP-plex assay in paternity testing. Forensic Sci Int Genet. 2008;2:292–300.

    Article  PubMed  Google Scholar 

  16. Schwark T, Meyer P, Harder M, Modrow J-H, von Wurmb-Schwark N. The SNPforID assay as a supplementary method in kinship and trace analysis. Transfus Med Hemother. 2012;39:187–93.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Flanagan SP, Jones AG. The future of parentage analysis: from microsatellites to SNPs and beyond. Mol Ecol. 2019;28:544–67.

    Article  PubMed  Google Scholar 

  18. Kidd KK, Pakstis AJ, Speed WC, Grigorenko EL, Kajuna SL, Karoma NJ, et al. Developing a SNP panel for forensic identification of individuals. Forensic Sci Int. 2006;164:20–32.

    Article  CAS  PubMed  Google Scholar 

  19. Sanchez JJ, Phillips C, Børsting C, Balogh K, Bogus M, Fondevila M, et al. A multiplex assay with 52 single nucleotide polymorphisms for human identification. Electrophoresis. 2006;27:1713–24.

    Article  CAS  PubMed  Google Scholar 

  20. Westen AA, Matai AS, Laros JF, Meiland HC, Jasper M, de Leeuw WJ, et al. Tri-allelic SNP markers enable analysis of mixed and degraded DNA samples. Forensic Sci Int Genet. 2009;3:233–41.

    Article  CAS  PubMed  Google Scholar 

  21. Chakraborty R, Stivers DN, Su B, Zhong Y, Budowle B. The utility of short tandem repeat loci beyond human identification: implications for development of new DNA typing systems. Electrophoresis. 1999;20:1682–96.

    Article  CAS  PubMed  Google Scholar 

  22. Cho S, Seo HJ, Lee J, Yu HJ, Lee SD. Kinship testing based on SNPs using microarray system. Transfus Med Hemother. 2016;43:429–32.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Mo SK, Ren ZL, Yang YR, Liu YC, Zhang JJ, Wu HJ, et al. A 472-SNP panel for pairwise kinship testing of second-degree relatives. Forensic Sci Int Genet. 2018;34:178–85.

    Article  CAS  PubMed  Google Scholar 

  24. Montanari S, Bianco L, Allen BJ, Martínez-García PJ, Bassil NV, Postman J, et al. Development of a highly efficient Axiom™ 70 K SNP array for Pyrus and evaluation for high-density mapping and germplasm characterization. BMC Genomics. 2019;20:331.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Tillmar A, Sturk-Andreaggi K, Daniels-Higginbotham J, Thomas JT, Marshall C. The FORCE panel: an all-in-one SNP marker set for confirming investigative genetic genealogy leads and for general forensic applications. Genes (Basel). 2021;12:1968.

    Article  CAS  PubMed  Google Scholar 

  26. Thorisson GA, Stein LD. The SNP consortium website: past, present and future. Nucleic Acids Res. 2003;31:124–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. 1000 Genomes Project Consortium, Auton A, Brooks LD, Durbin RM, Garrison EP, Kang HM, et al. A global reference for human genetic variation. Nature. 2015;526:68–74.

  28. Sudmant PH, Rausch T, Gardner EJ, Handsaker RE, Abyzov A, Huddleston J, et al. An integrated map of structural variation in 2,504 human genomes. Nature. 2015;526:75–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. UK10K Consortium, Walter K, Min JL, Huang J, Crooks L, Memari Y, et al. The UK 10K project identifies rare variants in health and disease. Nature. 2015;526:82–90.

  30. Liu TY, Lin CF, Wu HT, Wu YL, Chen YC, Liao CC, et al. Comparison of multiple imputation algorithms and verification using whole-genome sequencing in the CMUH Genetic biobank. BioMedicine (Taipei). 2021;11:57–65.

    Article  PubMed  Google Scholar 

  31. Pu CE, Wu FC, Cheng CL, Wu KC, Chao CH, Li JM. DNA short tandem repeat profiling of Chinese population in Taiwan determined by using an automated sequencer. Forensic Sci Int. 1998;97:47–51.

    Article  CAS  PubMed  Google Scholar 

  32. Dash HR, Shrivastava P, Das S. Calculation of paternity index in paternity dispute and identification cases. In: Principles and practices of DNA analysis: a laboratory manual for forensic DNA typing. Springer Protocols Handbooks. New York: Humana Press; 2020.

  33. Chang CC, Chow CC, Tellier LC, Vattikuti S, Purcell SM, Lee JJ. Second-generation PLINK: rising to the challenge of larger and richer datasets. Gigascience. 2015;4:7.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Manichaikul A, Mychaleckyj JC, Rich SS, Daly K, Sale M, Chen WM. Robust relationship inference in genome-wide association studies. Bioinformatics. 2010;26:2867–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Fan H, Chu JY. A brief review of short tandem repeat mutation. Genomics Proteomics Bioinformatics. 2007;5:7–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Budowle B, van Daal A. Forensically relevant SNP classes. Biotechniques. 2008;44:603–10.

    Article  CAS  PubMed  Google Scholar 

  37. Goddard ME, Kemper KE, MacLeod IM, Chamberlain AJ, Hayes BJ. Genetics of complex traits: prediction of phenotype, identification of causal polymorphisms and genetic architecture. Proc Biol Sci. 2016;283:20160569.

    PubMed  PubMed Central  Google Scholar 

  38. Sarkar A, Nandineni MR. Development of a SNP-based panel for human identification for Indian populations. Forensic Sci Int Genet. 2017;27:58–66.

    Article  CAS  PubMed  Google Scholar 

  39. Bae S, Won S, Kim H. Selection and evaluation of bi-allelic autosomal SNP markers for paternity testing in Koreans. Int J Legal Med. 2021;135:1369–74.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Habibi S, Ahmadi A, Behmanesh M, Miri A, Tavallaie M. Evaluation of ten SNP markers for human identification and paternity analysis in Persian population. Iran J Biotechnol. 2019;17:e2148.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Zhang J, Zhang J, Tao R, Yang Z, Zhang S, Li C. Mass spectrometry-based SNP genotyping as a potential tool for ancestry inference and human identification in Chinese Han and Uygur populations. Sci Justice. 2019;59:228–33.

    Article  PubMed  Google Scholar 

  42. Sun S, Liu Y, Li J, Yang Z, Wen D, Liang W, et al. Development and application of a nonbinary SNP-based microhaplotype panel for paternity testing involving close relatives. Forensic Sci Int Genet. 2020;46:102255.

    Article  CAS  PubMed  Google Scholar 

  43. Liao WL, Tsai FJ. Personalized medicine: a paradigm shift in healthcare. Biomedicine (Taipei). 2013;3:66–72.

    Article  Google Scholar 

Download references

Funding

This work was supported by a grant from the China Medical University Hospital, Taichung, Taiwan (# DMR 111-152).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fuu-Jen Tsai.

Ethics declarations

Studies in humans and animals

Human sample collection was approved by the Research Ethics Committee, China Medical University Hospital, Taichung, Taiwan (CMUH REC No.: CMUH107-REC3-058 and CMUH110-REC3-005). All research is conducted in compliance with government laws and ethics.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

12024_2024_790_MOESM1_ESM.xlsx

Table S1. The signature probe for kinship testing from Affymetrix designed in TPMv1 chip. Table S2. The calculation formula for paternity index (PI). Table S3. The selected single nucleotide polymorphisms (SNPs) in combined paternity index computing. Table S4. Summary results of short tandem repeat (STR) parentage testing with single parent-child pairs. Table S5. Summary of results for identity by descent (IBD), kinship-based inference for genome-wide association (KING), and combined paternity index (CPI). Table S6. Parentage testing sensitivity and specificity of SNP method compared with STR results in 355 single-parent-child pairs. Table S7. Comparison of four SNP parentage testing population and their SNP minor allele frequency in Taiwanese population (XLSX 234 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, YC., Lin, WD., Liu, TY. et al. Identification of the efficacy of parentage testing based on bi-allelic autosomal single nucleotide polymorphism markers in Taiwanese population. Forensic Sci Med Pathol (2024). https://doi.org/10.1007/s12024-024-00790-y

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12024-024-00790-y

Keywords

Navigation