Predicting Mechanical Properties of Carbonate Rocks Using Spectroscopy Across 0.4–12 μm

Author:

Bakun-Mazor D.ORCID,Ben-Ari Y.,Marco S.,Ben-Dor E.

Abstract

AbstractDetermining the mechanical characteristics of rocks is crucial in various civil engineering sectors. Traditionally, the mechanical properties of rocks are determined through on-site and laboratory tests carried out during geotechnical surveys. However, these extensive surveys require considerable time and resources. In contrast, hyperspectral remote sensing techniques offer a rapid and simple means to determine the mineral composition and crystallographic structure of rocks. These features, in turn, influence the rocks' mechanical properties. This study focuses on characterizing the mechanical properties of carbonate rocks in a laboratory setting, using hyperspectral sensors. Approximately 150 cylindrical carbonate rock samples, spanning a wide strength range, were collected from diverse Israeli rock outcrops. Employing a point spectrometer (0.4 to 2.5 µm) and a spectral image sensor (8.0 to 12.0 µm), we captured samples' light reflections and spectral emissivity. Mechanical attributes, including density, porosity, water absorption, and uniaxial compressive strength (UCS), were measured. Advanced data mining techniques identified statistical correlations between hyperspectral signatures and mechanical properties, pinpointing key wavelengths for prediction. The developed models exhibited excellent predictability for the specified properties, attributing accuracy to discernible mineralogy and internal crystalline structure through spectroscopy. However, predicting UCS showed slightly weaker results due to influences from internal flaws not entirely reflected in spectroscopic data. Nonetheless, outcomes regarding rock UCS were deemed satisfactory. These findings open avenues for non-destructive tools in assessing the mechanical properties of rocks in quarrying operations.

Funder

Ministry of Energy, Israel

Sami Shamoon College of Engineering

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3