Diversity Forests: Using Split Sampling to Enable Innovative Complex Split Procedures in Random Forests

Author:

Hornung RomanORCID

Abstract

AbstractThe diversity forest algorithm is an alternative candidate node split sampling scheme that makes innovative complex split procedures in random forests possible. While conventional univariable, binary splitting suffices for obtaining strong predictive performance, new complex split procedures can help tackling practically important issues. For example, interactions between features can be exploited effectively by bivariable splitting. With diversity forests, each split is selected from a candidate split set that is sampled in the following way: for $$l = 1, \dots , {nsplits}$$ l = 1 , , nsplits : (1) sample one split problem; (2) sample a single or few splits from the split problem sampled in (1) and add this or these splits to the candidate split set. The split problems are specifically structured collections of splits that depend on the respective split procedure considered. This sampling scheme makes innovative complex split procedures computationally tangible while avoiding overfitting. Important general properties of the diversity forest algorithm are evaluated empirically using univariable, binary splitting. Based on 220 data sets with binary outcomes, diversity forests are compared with conventional random forests and random forests using extremely randomized trees. It is seen that the split sampling scheme of diversity forests does not impair the predictive performance of random forests and that the performance is quite robust with regard to the specified nsplits value. The recently developed interaction forests are the first diversity forest method that uses a complex split procedure. Interaction forests allow modeling and detecting interactions between features effectively. Further potential complex split procedures are discussed as an outlook.

Funder

Deutsche Forschungsgemeinschaft

Ludwig-Maximilians-Universität München

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3