Skip to main content

Advertisement

Log in

Artificial intelligence in liver imaging: methods and applications

  • Review Article
  • Published:
Hepatology International Aims and scope Submit manuscript

Abstract

Liver disease is regarded as one of the major health threats to humans. Radiographic assessments hold promise in terms of addressing the current demands for precisely diagnosing and treating liver diseases, and artificial intelligence (AI), which excels at automatically making quantitative assessments of complex medical image characteristics, has made great strides regarding the qualitative interpretation of medical imaging by clinicians. Here, we review the current state of medical-imaging-based AI methodologies and their applications concerning the management of liver diseases. We summarize the representative AI methodologies in liver imaging with focusing on deep learning, and illustrate their promising clinical applications across the spectrum of precise liver disease detection, diagnosis and treatment. We also address the current challenges and future perspectives of AI in liver imaging, with an emphasis on feature interpretability, multimodal data integration and multicenter study. Taken together, it is revealed that AI methodologies, together with the large volume of available medical image data, might impact the future of liver disease care.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

All data used in this review is publicly available.

References

  1. Paik JM, Kabbara K, Eberly KE, et al. Global burden of NAFLD and chronic liver disease among adolescents and young adults [J]. Hepatology. 2022;75(5):1204–1217

    Article  CAS  PubMed  Google Scholar 

  2. Asrani SK, Devarbhavi H, Eaton J, et al. Burden of liver diseases in the world [J]. J Hepatol. 2019;70(1):151–171

    Article  PubMed  Google Scholar 

  3. Vogel A, Meyer T, Sapisochin G, et al. Hepatocellular carcinoma [J]. The Lancet. 2022;400(10360):1345–1362

    Article  CAS  Google Scholar 

  4. Hamer OW, Schlottmann K, Sirlin CB, et al. Technology Insight: advances in liver imaging [J]. Nat Clin Pract Gastr. 2007;4(4):215–228

    Google Scholar 

  5. Ipsen S, Wulff D, Kuhlemann I, et al. Towards automated ultrasound imaging-robotic image acquisition in liver and prostate for long-term motion monitoring [J]. Phys Med Biol. 2021. https://doi.org/10.1088/1361-6560/abf277

    Article  PubMed  Google Scholar 

  6. Krishnan R, Rajpurkar P, Topol EJ. Self-supervised learning in medicine and healthcare [J]. Nat Biomed Eng. 2022. https://doi.org/10.1038/s41551-022-00914-1

    Article  PubMed  Google Scholar 

  7. Shad R, Cunningham JP, Ashley EA, et al. Designing clinically translatable artificial intelligence systems for high-dimensional medical imaging [J]. Nat Mach Intell. 2021;3(11):929–935

    Article  Google Scholar 

  8. Huynh E, Hosny A, Guthier C, et al. Artificial intelligence in radiation oncology [J]. Nat Rev Clin Oncol. 2020;17(12):771–781

    Article  PubMed  Google Scholar 

  9. Lecun Y, Bottou L, Bengio Y, et al. Gradient-based learning applied to document recognition [J]. Proc IEEE. 1998;86(11):2278–2324

    Article  Google Scholar 

  10. Yasaka K, Abe O. Deep learning and artificial intelligence in radiology: current applications and future directions [J]. PLoS Med. 2018;15(11): e1002707

    Article  PubMed  PubMed Central  Google Scholar 

  11. Qian XJ, Pei J, Zheng H, et al. Prospective assessment of breast cancer risk from multimodal multiview ultrasound images via clinically applicable deep learning [J]. Nat Biomed Eng. 2021;5(6):522

    Article  PubMed  Google Scholar 

  12. Muse ED, Topol EJ. Digital medicine guiding ultrasound image capture with artificial intelligence [J]. Lancet. 2020;396(10253):749

    Article  PubMed  Google Scholar 

  13. Bera K, Schalper KA, Rimm DL, et al. Artificial intelligence in digital pathology—new tools for diagnosis and precision oncology [J]. Nat Rev Clin Oncol. 2019;16(11):703–715

    Article  PubMed  PubMed Central  Google Scholar 

  14. Yu KH, Zhang C, Berry GJ, et al. Predicting non-small cell lung cancer prognosis by fully automated microscopic pathology image features [J]. Nat Commun. 2016. https://doi.org/10.1038/ncomms12474

    Article  PubMed  PubMed Central  Google Scholar 

  15. Tschandl P, Rinner C, Apalla Z, et al. Human-computer collaboration for skin cancer recognition [J]. Nat Med. 2020;26(8):1229

    Article  CAS  PubMed  Google Scholar 

  16. Hofman MS, Lawrentschuk N, Francis RJ, et al. Prostate-specific membrane antigen PET-CT in patients with high-risk prostate cancer before curative-intent surgery or radiotherapy (proPSMA): a prospective, randomised, multicentre study [J]. Lancet. 2020;395(10231):1208–1216

    Article  CAS  PubMed  Google Scholar 

  17. Harvey H, Topol EJ. More than meets the AI: refining image acquisition and resolution [J]. Lancet. 2020;396(10261):1479

    Article  PubMed  Google Scholar 

  18. Primakov SP, Ibrahim A, Van Timmeren JE, et al. Automated detection and segmentation of non-small cell lung cancer computed tomography images [J]. Nat Commun. 2022. https://doi.org/10.1038/s41467-022-30841-3

    Article  PubMed  PubMed Central  Google Scholar 

  19. Huang SC, Chen CC, Lan J, et al. Deep neural network trained on gigapixel images improves lymph node metastasis detection in clinical settings [J]. Nat Commun. 2022. https://doi.org/10.1038/s41467-022-30746-1

    Article  PubMed  PubMed Central  Google Scholar 

  20. Daneshjou R, Vodrahalli K, Novoa RA, et al. Disparities in dermatology AI performance on a diverse, curated clinical image set [J]. Sci Adv. 2022. https://doi.org/10.1126/sciadv.abq6147

    Article  PubMed  PubMed Central  Google Scholar 

  21. Cui ZM, Fang Y, Mei LZ, et al. A fully automatic AI system for tooth and alveolar bone segmentation from cone-beam CT images [J]. Nat Commun. 2022. https://doi.org/10.1038/s41467-022-29637-2

    Article  PubMed  PubMed Central  Google Scholar 

  22. Berzin TM, Topol EJ. Adding artificial intelligence to gastrointestinal endoscopy [J]. Lancet. 2020;395(10223):485

    Article  PubMed  Google Scholar 

  23. Luetkens JA, Nowak S, Mesropyan N, et al. Deep learning supports the differentiation of alcoholic and other-than-alcoholic cirrhosis based on MRI [J]. Sci Rep-Uk. 2022;12(1):8297

    Article  CAS  Google Scholar 

  24. Wu N, Phang J, Park J, et al. Deep neural networks improve radiologists performance in breast cancer screening [J]. IEEE T Med Imaging. 2020;39(4):1184–1194

    Article  Google Scholar 

  25. Wang Y, Wang N, Xu M, et al. Deeply-supervised networks with threshold loss for cancer detection in automated breast ultrasound [J]. IEEE T Med Imaging. 2020;39(4):866–876

    Article  Google Scholar 

  26. Kumar A, Fulham M, Feng DG, et al. Co-learning feature fusion maps from PET-CT images of lung cancer [J]. IEEE T Med Imaging. 2020;39(1):204–217

    Article  Google Scholar 

  27. Jiang J, Hu YC, Liu CJ, et al. Multiple resolution residually connected feature streams for automatic lung tumor segmentation from CT images [J]. Ieee T Med Imaging. 2019;38(1):134–144

    Article  Google Scholar 

  28. Trayanova NA, Topol EJ. Deep learning a person’s risk of sudden cardiac death [J]. Lancet. 2022;399(10339):1933

    Article  PubMed  Google Scholar 

  29. Saillard C, Schmauch B, Laifa O, et al. Predicting survival after hepatocellular carcinoma resection using deep learning on histological slides [J]. Hepatology. 2020;72(6):2000–2013

    Article  PubMed  Google Scholar 

  30. Dong D, Fang MJ, Tang L, et al. Deep learning radiomic nomogram can predict the number of lymph node metastasis in locally advanced gastric cancer: an international multicenter study [J]. Ann Oncol. 2020;31(7):912–920

    Article  CAS  PubMed  Google Scholar 

  31. Dong D, Tang L, Li ZY, et al. Development and validation of an individualized nomogram to identify occult peritoneal metastasis in patients with advanced gastric cancer [J]. Ann Oncol. 2019;30(3):431–438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Esteva A, Topol E. Digital medicine can skin cancer diagnosis be transformed by AI? [J]. Lancet. 2019;394(10211):1795

    Article  Google Scholar 

  33. Leek JT, Scharpf RB, Bravo HC, et al. Tackling the widespread and critical impact of batch effects in high-throughput data [J]. Nat Rev Genet. 2010;11(10):733–739

    Article  CAS  PubMed  Google Scholar 

  34. Lu MY, Chen TY, Williamson DFK, et al. AI-based pathology predicts origins for cancers of unknown primary [J]. Nature. 2021;594(7861):106

    Article  CAS  PubMed  Google Scholar 

  35. Pelc NJ. Recent and future directions in CT imaging [J]. Ann Biomed Eng. 2014;42(2):260–268

    Article  PubMed  PubMed Central  Google Scholar 

  36. Yeo CT, Macdonald A, Ungi T, et al. Utility of 3D reconstruction of 2D liver computed tomography/magnetic resonance images as a surgical planning tool for residents in liver resection surgery [J]. J Surg Educ. 2018;75(3):792–797

    Article  PubMed  Google Scholar 

  37. Bilic P, Christ P F, Vorontsov E, et al. The liver tumor segmentation benchmark (lits) [J]. arXiv preprint arXiv:190104056. 2019.

  38. Heimann T, Van Ginneken B, Styner MA, et al. Comparison and evaluation of methods for liver segmentation from CT datasets [J]. IEEE T Med Imaging. 2009;28(8):1251–1265

    Article  Google Scholar 

  39. Kavur AE, Gezer NS, Bariş M, et al. CHAOS challenge-combined (CT-MR) healthy abdominal organ segmentation [J]. Med Image Anal. 2021;69: 101950

    Article  PubMed  Google Scholar 

  40. Lu C, Mandal M. Automated segmentation and analysis of the epidermis area in skin histopathological images [J]. Annu Int Conf IEEE Eng Med Biol Soc. 2012;2012:5355–5359

    PubMed  Google Scholar 

  41. Lindman K, Rose JF, Lindvall M, et al. Annotations, ontologies, and whole slide images–development of an annotated ontology-driven whole slide image library of normal and abnormal human tissue [J]. J Pathol Inform. 2019;10(1):22

    Article  PubMed  PubMed Central  Google Scholar 

  42. Padmakala S, Subasini CA, Karuppiah SP, et al. ESVM-SWRF: ensemble SVM-based sample weighted random forests for liver disease classification [J]. Int J Numer Method Biomed Eng. 2021;37(12): e3525

    Article  CAS  PubMed  Google Scholar 

  43. He K, Zhang X, Ren S, et al. Deep residual learning for image recognition [J]. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016: 770–8.

  44. Huang G, Liu Z, Weinberger KQ. Densely connected convolutional networks [J]. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017: 2261–9

  45. Gao R, Zhao S, Aishanjiang K, et al. Deep learning for differential diagnosis of malignant hepatic tumors based on multi-phase contrast-enhanced CT and clinical data [J]. J Hematol Oncol. 2021;14(1):154

    Article  PubMed  PubMed Central  Google Scholar 

  46. Lipkova J, Chen RJ, Chen BW, et al. Artificial intelligence for multimodal data integration in oncology [J]. Cancer Cell. 2022;40(10):1095–1110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Dosovitskiy A, Beyer L, Kolesnikov A, et al. An image is worth 16×16 words: transformers for image recognition at scale [J]. arXiv preprint arXiv:201011929. 2020.

  48. Sun C, Xu A, Liu D, et al. Deep learning-based classification of liver cancer histopathology images using only global labels [J]. IEEE J Biomed Health Inform. 2020;24(6):1643–1651

    Article  PubMed  Google Scholar 

  49. Deng J, Dong W, Socher R, et al. Imagenet: a large-scale hierarchical image database; proceedings of the 2009 IEEE conference on computer vision and pattern recognition, F, 2009 [C]. IEEE.

  50. Wang X, Yang S, Zhang J, et al. Transpath: Transformer-based self-supervised learning for histopathological image classification; proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, F, 2021 [C]. Springer.

  51. Liu LP, Wang L, Xu D, et al. CT image segmentation method of liver tumor based on artificial intelligence enabled medical imaging [J]. Math Probl Eng. 2021. https://doi.org/10.1155/2021/9919507

    Article  Google Scholar 

  52. Krishan A, Mittal D. Effective segmentation and classification of tumor on liver MRI and CT images using multi-kernel K-means clustering [J]. Biomed Eng-Biomed Te. 2020;65(3):301–313

    Article  CAS  Google Scholar 

  53. Wu R, Guo WB, Qiu XY, et al. Comprehensive analysis of spatial architecture in primary liver cancer [J]. Sci Adv. 2021. https://doi.org/10.1126/sciadv.abg3750

    Article  PubMed  PubMed Central  Google Scholar 

  54. Luca BA, Steen CB, Matusiak M, et al. Atlas of clinically distinct cell states and ecosystems across human solid tumors [J]. Cell. 2021;184(21):5482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Sandfort V, Yan K, Graffy PM, et al. Use of variational autoencoders with unsupervised learning to detect incorrect organ segmentations at CT [J]. Radiol Artif Intell. 2021;3(4): e200218

    Article  PubMed  PubMed Central  Google Scholar 

  56. Doman K, Konishi T, Mekada Y. Lesion image synthesis using DCGANs for metastatic liver cancer detection [J]. Adv Exp Med Biol. 2020;1213:95–106

    Article  PubMed  Google Scholar 

  57. Xue LY, Jiang ZY, Fu TT, et al. Transfer learning radiomics based on multimodal ultrasound imaging for staging liver fibrosis [J]. Eur Radiol. 2020;30(5):2973–2983

    Article  PubMed  PubMed Central  Google Scholar 

  58. Meng D, Zhang LB, Cao GT, et al. Liver fibrosis classification based on transfer learning and FCNet for ultrasound images [J]. IEEE Access. 2017;5:5804–5810

    Google Scholar 

  59. Russakovsky O, Deng J, Su H, et al. ImageNet large scale visual recognition challenge [J]. Int J Comput Vision. 2015;115(3):211–252

    Article  Google Scholar 

  60. Liu F, Samsonov A, Chen LH, et al. SANTIS: sampling- augmented neural network with incoherent structure for MR image reconstruction [J]. Magn Reson Med. 2019;82(5):1890–1904

    Article  PubMed  PubMed Central  Google Scholar 

  61. Choi KJ, Jang JK, Lee SS, et al. Development and validation of a deep learning system for staging liver fibrosis by using contrast agent-enhanced CT Images in the liver [J]. Radiology. 2018;289(3):688–697

    Article  PubMed  Google Scholar 

  62. Liu F, Ning Z, Liu Y, et al. Development and validation of a radiomics signature for clinically significant portal hypertension in cirrhosis (CHESS1701): a prospective multicenter study [J]. EBioMedicine. 2018;36:151–158. https://doi.org/10.1016/j.ebiom.2018.09.023

    Article  PubMed  PubMed Central  Google Scholar 

  63. Yang JQ, Zeng R, Cao JM, et al. Predicting gastro-oesophageal variceal bleeding in hepatitis B-related cirrhosis by CT radiomics signature [J]. Clin Radiol. 2019. https://doi.org/10.1016/j.crad.2019.08.028

    Article  PubMed  Google Scholar 

  64. Mokrane FZ, Lu L, Vavasseur A, et al. Radiomics machine-learning signature for diagnosis of hepatocellular carcinoma in cirrhotic patients with indeterminate liver nodules [J]. Eur Radiol. 2020;30(1):558–570

    Article  PubMed  Google Scholar 

  65. Chiang MF, Tseng TK, Shih CW, et al. Clinical and contrast-enhanced image features in the prediction model for the detection of small hepatocellular carcinomas [J]. J Cancer. 2020;11(24):7166–7175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Preis O, Blake MA, Scott JA. Neural network evaluation of PET scans of the liver: a potentially useful adjunct in clinical interpretation [J]. Radiology. 2011;258(3):714–721

    Article  PubMed  Google Scholar 

  67. Liu YN, Ning ZY, Ormeci N, et al. Deep convolutional neural network-aided detection of portal hypertension in patients with cirrhosis [J]. Clin Gastroenterol Hepatol. 2020;18(13):2998

    Article  PubMed  Google Scholar 

  68. Jansen MJA, Kuijf HJ, Veldhuis WB, et al. Automatic classification of focal liver lesions based on MRI and risk factors [J]. PLoS ONE. 2019. https://doi.org/10.1371/journal.pone.0217053

    Article  PubMed  PubMed Central  Google Scholar 

  69. Hamm CA, Wang CJ, Savic LJ, et al. Deep learning for liver tumor diagnosis part I: development of a convolutional neural network classifier for multi-phasic MRI [J]. Eur Radiol. 2019;29(7):3338–3347

    Article  PubMed  PubMed Central  Google Scholar 

  70. Zhang F, Yang J, Nezami N, et al. Liver tissue classification using an auto-context-based deep neural network with a multi-phase training framework. In Patch-Based Techniques in Medical Imaging: 4th International Workshop, Patch-MI 2018, Held in Conjunction with MICCAI 2018, Granada, Spain, September 20, 2018, Proceedings 4 2018. Springer: International Publishing; 2018. pp. 59–66

  71. Wang CJ, Hamm CA, Savic LJ, et al. Deep learning for liver tumor diagnosis part II: convolutional neural network interpretation using radiologic imaging features [J]. Eur Radiol. 2019;29(7):3348–3357

    Article  PubMed  PubMed Central  Google Scholar 

  72. Wang K, Lu X, Zhou H, et al. Deep learning radiomics of shear wave elastography significantly improved diagnostic performance for assessing liver fibrosis in chronic hepatitis B: a prospective multicentre study [J]. Gut. 2019;68(4):729–741

    Article  CAS  PubMed  Google Scholar 

  73. Yang Q, Wei JW, Hao XH, et al. Improving B-mode ultrasound diagnostic performance for focal liver lesions using deep learning: a multicentre study [J]. EBioMedicine. 2020. https://doi.org/10.1016/j.ebiom.2020.102777

    Article  PubMed  PubMed Central  Google Scholar 

  74. Guo LH, Wang D, Qian YY, et al. A two-stage multi-view learning framework based computer-aided diagnosis of liver tumors with contrast enhanced ultrasound images [J]. Clin Hemorheol Micro. 2018;69(3):343–354

    Google Scholar 

  75. Schmauch B, Herent P, Jehanno P, et al. Diagnosis of focal liver lesions from ultrasound using deep learning [J]. Diagn Interv Imag. 2019;100(4):227–233

    Article  CAS  Google Scholar 

  76. Yu Q, Huang YF, Li XG, et al. An imaging-based artificial intelligence model for non-invasive grading of hepatic venous pressure gradient in cirrhotic portal hypertension [J]. Cell Rep Med. 2022. https://doi.org/10.1016/j.xcrm.2022.100563

    Article  PubMed  PubMed Central  Google Scholar 

  77. Muller L, Kloeckner R, Mahringer-Kunz A, et al. Fully automated AI-based splenic segmentation for predicting survival and estimating the risk of hepatic decompensation in TACE patients with HCC [J]. Eur Radiol. 2022;32(9):6302–6313

    Article  PubMed  PubMed Central  Google Scholar 

  78. Ji GW, Zhu FP, Xu Q, et al. Machine-learning analysis of contrast-enhanced CT radiomics predicts recurrence of hepatocellular carcinoma after resection: a multi-institutional study [J]. EBioMedicine. 2019;50:156–165

    Article  PubMed  PubMed Central  Google Scholar 

  79. Song DJ, Wang YY, Wang WT, et al. Using deep learning to predict microvascular invasion in hepatocellular carcinoma based on dynamic contrast-enhanced MRI combined with clinical parameters [J]. J Cancer Res Clin. 2021;147(12):3757–3767

    Article  CAS  Google Scholar 

  80. Jiang YQ, Cao SE, Cao SL, et al. Preoperative identification of microvascular invasion in hepatocellular carcinoma by XGBoost and deep learning [J]. J Cancer Res Clin. 2021;147(3):821–833

    Article  Google Scholar 

  81. Zhang YX, Lv XF, Qiu JL, et al. Deep learning with 3D convolutional neural network for noninvasive prediction of microvascular invasion in hepatocellular carcinoma [J]. J Magn Reson Imaging. 2021;54(1):134–143

    Article  PubMed  Google Scholar 

  82. Ibragimov B, Toesca D, Chang D, et al. Development of deep neural network for individualized hepatobiliary toxicity prediction after liver SBRT [J]. Med Phys. 2018;45(10):4763–4774

    Article  PubMed  PubMed Central  Google Scholar 

  83. Morshid A, Elsayes KM, Khalaf AM, et al. A machine learning model to predict hepatocellular carcinoma response to transcatheter arterial chemoembolization [J]. Radiol Artif Intell. 2019. https://doi.org/10.1148/ryai.2019180021

    Article  PubMed  PubMed Central  Google Scholar 

  84. Peng J, Kang S, Ning Z, et al. Residual convolutional neural network for predicting response of transarterial chemoembolization in hepatocellular carcinoma from CT imaging [J]. Eur Radiol. 2020;30(1):413–424

    Article  PubMed  Google Scholar 

  85. Abajian A, Murali N, Savic LJ, et al. Predicting treatment response to intra-arterial therapies for hepatocellular carcinoma with the use of supervised machine learning—an artificial intelligence concept [J]. J Vasc Interv Radiol. 2018;29(6):850–857

    Article  PubMed  PubMed Central  Google Scholar 

  86. He T, Fong JN, Moore LW, et al. An imageomics and multi-network based deep learning model for risk assessment of liver transplantation for hepatocellular cancer [J]. Comput Med Imaging Graph. 2021;89:101894. https://doi.org/10.1016/j.compmedimag.2021.101894

    Article  PubMed  PubMed Central  Google Scholar 

  87. Oezdemir I, Wessner CE, Shaw C, et al. Tumor vascular networks depicted in contrast-enhanced ultrasound images as a predictor for transarterial chemoembolization treatment response [J]. Ultrasound Med Biol. 2020;46(9):2276–2286

    Article  PubMed  PubMed Central  Google Scholar 

  88. Taylor-Weiner A, Pokkalla H, Han L, et al. A machine learning approach enables quantitative measurement of liver histology and disease monitoring in NASH [J]. Hepatology. 2021;74(1):133–147

    Article  PubMed  Google Scholar 

  89. Liver EAS. EASL clinical practice guidelines: management of hepatocellular carcinoma [J]. J Hepatol. 2018;69(1):182–236

    Article  Google Scholar 

  90. Heimbach JK, Kulik LM, Finn RS, et al. AASLD guidelines for the treatment of hepatocellular carcinoma [J]. Hepatology. 2018;67(1):358–380

    Article  PubMed  Google Scholar 

  91. Li XH, Liang Q, Chen TW, et al. Diagnostic value of imaging examinations in patients with primary hepatocellular carcinoma [J]. World J Clin Cases. 2018;6(9):242–248

    Article  PubMed  PubMed Central  Google Scholar 

  92. Villanueva A, Minguez B, Forner A, et al. Hepatocellular carcinoma: novel molecular approaches for diagnosis, prognosis, and therapy [J]. Annu Rev Med. 2010;61:317–328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Ginsburg GS, Willard HF. Genomic and personalized medicine: foundations and applications [J]. Transl Res. 2009;154(6):277–287

    Article  PubMed  Google Scholar 

  94. Gevaert O, Xu JJ, Hoang CD, et al. Non-small cell lung cancer: identifying prognostic imaging biomarkers by leveraging public gene expression microarray data-methods and preliminary results [J]. Radiology. 2012;264(2):387–396

    Article  PubMed  PubMed Central  Google Scholar 

  95. Muller L, Gairing SJ, Kloeckner R, et al. Baseline splenic volume outweighs immuno-modulated size changes with regard to survival outcome in patients with hepatocellular carcinoma under immunotherapy [J]. Cancers. 2022. https://doi.org/10.3390/cancers14153574

    Article  PubMed  PubMed Central  Google Scholar 

  96. Calderaro J, Seraphin TP, Luedde T, et al. Artificial intelligence for the prevention and clinical management of hepatocellular carcinoma [J]. J Hepatol. 2022;76(6):1348–1361

    Article  PubMed  PubMed Central  Google Scholar 

  97. Rajpurkar P, Chen E, Banerjee O, et al. AI in health and medicine [J]. Nat Med. 2022;28(1):31–38

    Article  CAS  PubMed  Google Scholar 

  98. Bi WL, Hosny A, Schabath MB, et al. Artificial intelligence in cancer imaging: clinical challenges and applications [J]. CA-Cancer J Clin. 2019;69(2):127–157

    Article  PubMed  PubMed Central  Google Scholar 

  99. Barrett T, De Rooij M, Giganti F, et al. Quality checkpoints in the MRI-directed prostate cancer diagnostic pathway [J]. Nat Rev Urol. 2022;20:9–22

    Article  PubMed  Google Scholar 

  100. Liccardo D, Mosca A, Petroni S, et al. The association between retinal microvascular changes, metabolic risk factors, and liver histology in pediatric patients with non-alcoholic fatty liver disease (NAFLD) [J]. J Gastroenterol. 2015;50(8):903–912

    Article  CAS  PubMed  Google Scholar 

  101. Li JX, Zhang B, Zhang D. Joint discriminative and collaborative representation for fatty liver disease diagnosis [J]. Expert Syst Appl. 2017;89:31–40

    Article  Google Scholar 

  102. Zhang P, Wang B, Li S. Network-based cancer precision prevention with artificial intelligence and multi-omics [J]. Sci Bull. 2023;68(12):1219–1222. https://doi.org/10.1016/j.scib.2023.05.023

    Article  Google Scholar 

  103. Lin XM, Hu L, Gu J, et al. Choline kinase α mediates interactions between the epidermal growth factor receptor and mechanistic target of rapamycin complex 2 in hepatocellular carcinoma cells to promote drug resistance and xenograft tumor progression [J]. Gastroenterology. 2017;152(5):1187–1202. https://doi.org/10.1053/j.gastro.2016.12.033

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work is supported by research grants from the National Natural Science Foundation of China [T2341008, 81225025 and 82305047] and sponsored by Tsinghua-Toyota Joint Research Fund, and Anhui Province Traditional Chinese Medicine Science and Technology Research Project [202303a07020001].

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shao Li or Xiaolong Qi.

Ethics declarations

Conflict of interest

Peng Zhang, Chaofei Gao, Yifei Huang, Xiangyi Chen,Zhuoshi Pan, Lan Wang, Di Dong, Shao Li and Xiaolong Qi declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, P., Gao, C., Huang, Y. et al. Artificial intelligence in liver imaging: methods and applications. Hepatol Int 18, 422–434 (2024). https://doi.org/10.1007/s12072-023-10630-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12072-023-10630-w

Keywords

Navigation