Publisher
Springer Science and Business Media LLC
Subject
Mathematical Physics,Statistical and Nonlinear Physics
Reference23 articles.
1. Berger, Q., Toninelli, F.L.: On the critical point of the random walk pinning model in dimension $$d=3$$ d = 3 . Electron. J. Probab. 15, 654–683 (2010)
2. Berkner, M., Sun, R.: Annealed versus quenched critical points for a random walk pinning model. Ann. Inst. H. Poincaré Probab. Stat. 46, 424–441 (2010)
3. Brydges, D., Spencer, T.: Self-avoiding walk in 5 or more dimensions. Commun. Math. Phys. 97, 125–148 (1985)
4. Chakrabarti, B.K., Kertész, J.: The statistics of self-avoiding walks on a disordered lattice. Z. Phys. B Condens. Matter 44, 221–223 (1981)
5. Chakrabarti, B.K., Roy, A.K.: Statictics of self-avoiding walks on random lattices. Z. Phys. B Condens. Matter. 55, 131–136 (1984)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Weighted self-avoiding walks;Journal of Algebraic Combinatorics;2019-06-18