Convergence in the p-Contest

Author:

Kennerberg Philip,Volkov StanislavORCID

Abstract

AbstractWe study asymptotic properties of the following Markov system of $$N \ge 3$$N3 points in [0, 1]. At each time step, the point farthest from the current centre of mass, multiplied by a constant $$p>0$$p>0, is removed and replaced by an independent $$\zeta $$ζ-distributed point; the problem, inspired by variants of the Bak–Sneppen model of evolution and called a p-contest, was posed in Grinfeld et al. (J Stat Phys 146, 378–407, 2012). We obtain various criteria for the convergences of the system, both for $$p<1$$p<1 and $$p>1$$p>1. In particular, when $$p<1$$p<1 and $$\zeta \sim U[0,1]$$ζU[0,1], we show that the limiting configuration converges to zero. When $$p>1$$p>1, we show that the configuration must converge to either zero or one, and we present an example where both outcomes are possible. Finally, when $$p>1$$p>1, $$N=3$$N=3 and $$\zeta $$ζ satisfies certain mild conditions (e.g. $$\zeta \sim U[0,1]$$ζU[0,1]), we prove that the configuration converges to one a.s. Our paper substantially extends the results of Grinfeld et al. (Adv Appl Probab 47:57–82, 2015) and Kennerberg and Volkov (Adv Appl Probab 50:414–439, 2018) where it was assumed that $$p=1$$p=1. Unlike the previous models, one can no longer use the Lyapunov function based just on the radius of gyration; when $$0<p<1$$0<p<1 one has to find a more finely tuned function which turns out to be a supermartingale; the proof of this fact constitutes an unwieldy, albeit necessary, part of the paper.

Funder

Vetenskapsrådet

Crafoordska Stiftelsen

Publisher

Springer Science and Business Media LLC

Subject

Mathematical Physics,Statistical and Nonlinear Physics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The limit point in the Jante’s law process has an absolutely continuous distribution;Stochastic Processes and their Applications;2024-02

2. A Local Barycentric Version of the Bak–Sneppen Model;Journal of Statistical Physics;2021-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3