Exponential Stability and Hypoelliptic Regularization for the Kinetic Fokker–Planck Equation with Confining Potential

Author:

Arnold Anton,Toshpulatov Gayrat

Abstract

AbstractThis paper is concerned with a modified entropy method to establish the large-time convergence towards the (unique) steady state, for kinetic Fokker–Planck equations with non-quadratic confinement potentials in whole space. We extend previous approaches by analyzing Lyapunov functionals with non-constant weight matrices in the dissipation functional (a generalized Fisher information). We establish exponential convergence in a weighted $$H^1$$ H 1 -norm with rates that become sharp in the case of quadratic potentials. In the defective case for quadratic potentials, i.e. when the drift matrix has non-trivial Jordan blocks, the weighted $$L^2$$ L 2 -distance between a Fokker–Planck-solution and the steady state has always a sharp decay estimate of the order $$\mathcal O\big ( (1+t)e^{-t\nu /2}\big )$$ O ( ( 1 + t ) e - t ν / 2 ) , with $$\nu $$ ν the friction parameter. The presented method also gives new hypoelliptic regularization results for kinetic Fokker–Planck equations (from a weighted $$L^2$$ L 2 -space to a weighted $$H^1$$ H 1 -space).

Funder

Austrian Science Fund

TU Wien

Publisher

Springer Science and Business Media LLC

Reference32 articles.

1. Achleitner, F., Arnold, A., Stürzer, D.: Large-time behavior in non-symmetric Fokker–Planck equations. Rivista di Matematica della Universitá di Parma 6(1), 1–68 (2015)

2. Arnold, A., Carlen, E., Ju, Q.: Large-time behavior of non-symmetric Fokker–Planck type equations. Commun. Stoch. Anal. 2(1), 153–175 (2008)

3. Arnold, A., Erb, J.: Sharp entropy decay for hypocoercive and non-symmetric Fokker–Planck equations with linear drift. arXiv Preprint arXiv:1409.5425 (2014)

4. Arnold, A., Markowich, P., Toscani, G., Unterreiter, A.: On convex Sobolev inequalities and the rate of convergence to equilibrium for Fokker–Planck type equations. Commun. Partial Differ. Equ. 26(1–2), 43–100 (2001)

5. Arnold, A., Schmeiser, C., Signorello, B.: Propagator norm and sharp decay estimates for Fokker–Planck equations with linear drift. Commun. Math. Sci. 20(4), 1047–1080 (2022)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3