Symmetry Classes of Classical Stochastic Processes

Author:

Sá LucasORCID,Ribeiro PedroORCID,Prosen TomažORCID,Bernard DenisORCID

Abstract

Abstract We perform a systematic symmetry classification of the Markov generators of classical stochastic processes. Our classification scheme is based on the action of involutive symmetry transformations of a real Markov generator, extending the Bernard-LeClair scheme to the arena of classical stochastic processes and leading to a set of up to fifteen allowed symmetry classes. We construct families of solutions of arbitrary matrix dimensions for five of these classes with a simple physical interpretation of particles hopping on multipartite graphs. In the remaining classes, such a simple construction is prevented by the positivity of entries of the generator particular to classical stochastic processes, which imposes a further requirement beyond the usual symmetry classification constraints. We partially overcome this difficulty by resorting to a stochastic optimization algorithm, finding specific examples of generators of small matrix dimensions in six further classes, leaving the existence of the final four allowed classes an open problem. Our symmetry-based results unveil new possibilities in the dynamics of classical stochastic processes: Kramers degeneracy of eigenvalue pairs, dihedral symmetry of the spectra of Markov generators, and time reversal properties of stochastic trajectories and correlation functions.

Funder

Royal Commission for the Exhibition of 1851

Fundação para a Ciência e a Tecnologia

Horizon 2020 Framework Programme

HORIZON EUROPE European Research Council

Javna agencija za znanstvenoraziskovalno in inovacijsko dejavnost

Centre National de la Recherche Scientifique

École Normale Supérieure

Agence Nationale de la Recherche

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3