Investigation of the Potential Correlation Between RNA-Binding Proteins in the Evolutionarily Conserved MEX3 Family and Non-small-Cell Lung Cancer

Author:

Zhang Ming,Cao Linfeng,Hou Gouxin,Lv Xiaodong,Deng JingjingORCID

Abstract

AbstractMembers of the MEX3 (muscle excess 3) family, uniquely characterised as mRNA binding proteins, play emerging roles in the post-transcriptional regulation of programmed biological processes, including tumour cell death and immune mechanisms, and have been shown to be involved in a variety of diseases. However, the role of MEX3 in non-small cell lung cancer (NSCLC) has not been fully elucidated. In this study, we found no significant changes in the sequence and copy number of the MEX3 gene through analysis using the COSMIC database, revealing its stability during malignancy development. Its expression in NSCLC was examined using the Oncomine™ database, and the prognosis of each member gene was analysed by Kaplan–Meier. The results showed that overexpression of MEX3A, MEX3B, MEX3C and MEX3D was associated with significantly worse OS in patients with LUAD, while overexpression of MEX3D was also associated with significantly worse OS in patients with LUSC. Afterwards, we applied the Tumour Immunology Estimation Resource (TIMER) tool to assess the correlation between different MEX3 and infiltrative immune cell infiltration. Ultimately, we found that most MEX3 members were highly expressed in NSCLC, with high expression suggesting poor prognosis and correlating with immune cell infiltration. The complexity and heterogeneity of NSCLC was understood through MEX3, setting the framework for the prognostic impact of MEX3 in NSCLC patients and the development of new targeted therapeutic strategies in the future.

Funder

the Key Discipline of Jiaxing Respiratory Medicine Construction Project

Science Technology Project of Jiaxing

Jiaxing Key Laboratory of Precision Treatment for Lung Cancer

The Early Diagnosis and Comprehensive Treatment of Lung Cancer Innovation Team Building Project

Publisher

Springer Science and Business Media LLC

Subject

Molecular Biology,Applied Microbiology and Biotechnology,Biochemistry,Bioengineering,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3