Glycogen Synthase Kinase-3β Inhibitor VP3.15 Ameliorates Neurogenesis, Neuronal Loss and Cognitive Impairment in a Model of Germinal Matrix-intraventricular Hemorrhage of the Preterm Newborn

Author:

Atienza-Navarro Isabel,del Marco Angel,Alves-Martinez Pilar,Garcia-Perez Maria de los Angeles,Raya-Marin Alvaro,Benavente-Fernandez Isabel,Gil Carmen,Martinez Ana,Lubian-Lopez Simon,Garcia-Alloza Monica

Abstract

AbstractAdvances in neonatology have significantly reduced mortality rates due to prematurity. However, complications of prematurity have barely changed in recent decades. Germinal matrix-intraventricular hemorrhage (GM-IVH) is one of the most severe complications of prematurity, and these children are prone to suffer short- and long-term sequelae, including cerebral palsy, cognitive and motor impairments, or neuropsychiatric disorders. Nevertheless, GM-IVH has no successful treatment. VP3.15 is a small, heterocyclic molecule of the 5-imino-1,2,4-thiadiazole family with a dual action as a phosphodiesterase 7 and glycogen synthase kinase-3β (GSK-3β) inhibitor. VP3.15 reduces neuroinflammation and neuronal loss in other neurodegenerative disorders and might ameliorate complications associated with GM-IVH. We administered VP3.15 to a mouse model of GM-IVH. VP3.15 reduces the presence of hemorrhages and microglia in the short (P14) and long (P110) term. It ameliorates brain atrophy and ventricle enlargement while limiting tau hyperphosphorylation and neuronal and myelin basic protein loss. VP3.15 also improves proliferation and neurogenesis as well as cognition after the insult. Interestingly, plasma gelsolin levels, a feasible biomarker of brain damage, improved after VP3.15 treatment. Altogether, our data support the beneficial effects of VP3.15 in GM-IVH by ameliorating brain neuroinflammatory, vascular and white matter damage, ultimately improving cognitive impairment associated with GM-IVH.

Publisher

Springer Science and Business Media LLC

Subject

Cardiology and Cardiovascular Medicine,Neurology (clinical),General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3