A Probabilistic Evaluation of Surface Loading and Concentration as Metrics for Post Structural Fire Assessment Soot Sampling Data

Author:

Spicer R. ChristopherORCID

Abstract

AbstractSurface sampling and laboratory analysis for soot/combustion particulates was conducted following a fire at an education/research facility in the southwest United States. This provided a bank of data by which to probabilistically evaluate the behavior of soot loading (counts/mm2) and relative soot concentration (percent ratio; %R) as useful metrics for quantifying differences in soot impact across a building. Surface tape sampling and analysis via light microscopy were conducted via industry standard protocols, and resulting data from various building zones were selected to construct various comparisons. The performance of counts/mm2 and %R as metrics to identify differences in soot impact for each comparison was assessed by comparing inference generated by traditional Student’s t test, Mann Whitney U rank comparison (MW), and the directly calculated axiomatic probability associated with difference in detection (pΔfd). The fourteen (14) comparisons in which a significant difference was inferred via pΔfd was similarly indicated via Student’s t and/or MW in only four (4) instances. Further, approximately one half of the comparisons generated different inference via pΔfd for counts/mm2 and %R, with the former demonstrating better discriminatory ability. In broad view, the heuristic concept of comparing numerical “soot levels” (e.g., average) by either metric was not generally suitable for the distribution of the data. In contrast, pΔfd avoids the statistical bias imposed by traditional statistical inference, and ultimately the efficacy of post fire comparative surface sampling is as dependent upon the metric and inference model utilized as it is on the sampling and laboratory analytical protocols.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3