Analyzing the Effective Use of Augmented Reality Glasses in University Physics Laboratory Courses for the Example Topic of Optical Polarization

Author:

Laumann DanielORCID,Schlummer PaulORCID,Abazi AdrianORCID,Borkamp Rasmus,Lauströer Jonas,Pernice WolframORCID,Schuck CarstenORCID,Schulz-Schaeffer ReinhardORCID,Heusler StefanORCID

Abstract

AbstractFor nearly two decades, augmented reality (AR) has found diverse applications in education, particularly in science education, where its efficacy has been supported by relevant theories and many empirical studies. However, previous studies have revealed the following research deficit: While AR technology appears to influence learning-related variables, at the time of this study only few research on the use of AR glasses in physics, a discipline for which this technology seems particularly promising in the context of laboratory experiments, has been found. Thus, the present study uses an experimental comparison group design to investigate the question of how the use of AR glasses in a physics laboratory experiment (compared to in a learning setting without AR) influences students’ motivation to learn, their cognitive load during the learning process and their learning achievement. The study (sample size N = 75) investigated the impact of AR glasses in a physics laboratory experiment on optical polarization. Results align with prior research, indicating heightened motivation among learners using AR applications. However, the absence of a significant difference in cognitive load between AR and non-AR learners was unexpected. Despite expectations based on spatial contiguity, learners with AR showed no advantage in learning achievement, challenging existing meta-analyses in physics education. These findings suggest a need to shift focus from surface features, like specific AR technology, to the content design of AR applications. Future studies should analyze the deep structure of AR applications, identifying features conducive to learning.

Funder

Universität Münster

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3