Enhancement of recombinant human IL-24 (rhIL-24) protein production from site-specific integrated engineered CHO cells by sodium butyrate treatment

Author:

Hua Jilei,Xu Hanli,Zhang Yao,Ge Jianlin,Liu Mengzhe,Wang Yuqi,Wei Yuexian,Shi Yinan,Hou LingLing,Jiang Hong

Abstract

AbstractInterleukin-24 (IL-24) has specific inhibitory effects on the proliferation of various tumor cells with almost no toxicity to normal cells. The antitumor activity of recombinant human IL-24 protein produced in mammalian cells is much higher than that of bacteria, but its expression level is extremely low. Sodium butyrate (NaBu) was utilized as a media additive to increase protein expression in Chinese hamster ovary cells. The site-specific integrated engineered cells FCHO/IL-24 were treated with NaBu under different culture conditions (10% and 0.5% serum adherent culture, 0.5% serum suspension culture). First, 3 days of 1 mmol/L NaBu treatment significantly increased rhIL-24 expression level in FCHO/IL-24 cells by 119.94 ± 1.5% (**p < 0.01), 57.49 ± 2.4% (**p < 0.01), and 20.17 ± 3.03% (*p < 0.05) under the above culture conditions. Second, NaBu has a time- and dose-dependent inhibitory effect on FCHO/IL-24 proliferation and induces G0/G1 phase arrest. Under 10% and 0.5% serum adherent culture, G0/G1 phase cells were increased by 11.3 ± 0.5% (**p < 0.01) and 15.0 ± 2.6% (**p < 0.01), respectively. No induction of apoptosis was observed under a high dosage of NaBu treatment. These results suggest that NaBu increases rhIL-24 secretion via inhibiting cell cycle progression, thereby trapping cells in the highly productive G0/G1 phase. Finally, with increasing NaBu dose, glucose concentration increased (**p < 0.01) while lactic acid and ammonia concentrations reduced significantly (**p < 0.01) in 10% and 0.5% serum adherent culture supernatant. RNA-seq showed that NaBu treatment affected multiple tumor and immune-related pathways. In conclusion, NaBu treatment dramatically promoted rhIL-24 production in engineered FCHO/IL-24 cells by altering downstream pathways and inducing G0/G1 cell arrest with little effect on apoptosis.

Funder

Natural Science Foundation of Beijing Municipality

Central University Basic Research Fund of China

Publisher

Springer Science and Business Media LLC

Subject

General Medicine,Bioengineering,Biotechnology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3