Author:
Deshavath Narendra Naik,Mohan Mood,Veeranki Venkata Dasu,Goud Vaibhav V.,Pinnamaneni Srinivasa Rao,Benarjee Tamal
Abstract
Abstract
Conversion of lignocellulosic biomass into monomeric carbohydrates is economically beneficial and suitable for sustainable production of biofuels. Hydrolysis of lignocellulosic biomass using high acid concentration results in decomposition of sugars into fermentative inhibitors. Thus, the main aim of this work was to investigate the optimum hydrolysis conditions for sorghum brown midrib IS11861 biomass to maximize the pentose sugars yield with minimized levels of fermentative inhibitors at low acid concentrations. Process parameters investigated include sulfuric acid concentration (0.2–1 M), reaction time (30–120 min) and temperature (80–121 °C). At the optimum condition (0.2 M sulfuric acid, 121 °C and 120 min), 97.6% of hemicellulose was converted into xylobiose (18.02 mg/g), xylose (225.2 mg/g), arabinose (20.2 mg/g) with low concentration of furfural (4.6 mg/g). Furthermore, the process parameters were statistically optimized using response surface methodology based on central composite design. Due to the presence of low concentration of fermentative inhibitors, 78.6 and 82.8% of theoretical ethanol yield were attained during the fermentation of non-detoxified and detoxified hydrolyzates, respectively, using Pichia stipitis 3498 wild strain, in a techno-economical way.
Publisher
Springer Science and Business Media LLC
Subject
Agricultural and Biological Sciences (miscellaneous),Environmental Science (miscellaneous),Biotechnology
Reference40 articles.
1. Agbogbo F, Wenger K (2007) Production of ethanol from corn stover hemicellulose hydrolyzate using Pichia stipitis. J Ind Microbiol Biotechnol 34(11):723–727. doi:10.1007/s10295-007-0247-z
2. Barriere Y, Guillet C, Goffner D, Pichon M (2003) Genetic variation and breeding strategies for improved cell wall digestibility in annual forage crops. A review. Anim Res 52(3):193–228. doi:10.1051/animres:2003018
3. Brigham JS, Adney WS, Himmel ME (1996) Hemicellulases: diversity and applications. In: Wyman CE (ed) Handbook on bioethanol: production and utilization. Taylor & Francis, Washington, DC, pp 119–141
4. Chandel AK, Kapoor RK, Singh A, Kuhad RC (2007) Detoxification of sugarcane bagasse hydrolysate improves ethanol production by Candida shehatae NCIM 3501. Bioresour Technol 98(10):1947–1950. doi:10.1016/j.biortech.2006.07.047
5. Chen F, Dixon RA (2007) Lignin modification improves fermentable sugar yields for biofuel production. Nat Biotechnol 25(7):759–761. doi:10.1038/nbt1316