Abnormal intrinsic brain functional network dynamics in patients with cervical spondylotic myelopathy

Author:

Zhao Guoshu,Zhan Yaru,Zha Jing,Cao Yuan,Zhou Fuqing,He LaichangORCID

Abstract

AbstractThe specific topological changes in dynamic functional networks and their role in cervical spondylotic myelopathy (CSM) brain function reorganization remain unclear. This study aimed to investigate the dynamic functional connection (dFC) of patients with CSM, focusing on the temporal characteristics of the functional connection state patterns and the variability of network topological organization. Eighty-eight patients with CSM and 77 healthy controls (HCs) were recruited for resting-state functional magnetic resonance imaging. We applied the sliding time window analysis method and K-means clustering analysis to capture the dFC variability patterns of the two groups. The graph-theoretical approach was used to investigate the variance in the topological organization of whole-brain functional networks. All participants showed four types of dynamic functional connection states. The mean dwell time in state 2 was significantly different between the two groups. Particularly, the mean dwell time in state 2 was significantly longer in the CSM group than in the healthy control group. Among the four states, switching of relative brain networks mainly included the executive control network (ECN), salience network (SN), default mode network (DMN), language network (LN), visual network (VN), auditory network (AN), precuneus network (PN), and sensorimotor network (SMN). Additionally, the topological properties of the dynamic network were variable in patients with CSM. Dynamic functional connection states may offer new insights into intrinsic functional activities in CSM brain networks. The variance of topological organization may suggest instability of the brain networks in patients with CSM.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jiangxi Province

Publisher

Springer Science and Business Media LLC

Subject

Cognitive Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3