Abstract
Abstract
Background
Polymers in practical applications often face diverse torsional loads, such as polymeric gears, couplings, scaffolds, etc. Meanwhile, additive manufacturing enables the creation of intricate geometries for specific needs and its application to fabricate various component parts has grown exponentially. Nevertheless, research on cyclic and reversed cyclic torsional loading of additively-manufactured polymers is very limited.
Objective
Mechanical characterization of monotonic, cyclic, and reversed cyclic torsion in polylactic acid (PLA), PLA Premium, and PLA Tough materials.
Methods
Specimens were 3D-printed with a 0° build orientation using an extrusion technique and two infill orientation angles (± 45° and 0°/90°). Specimens were subjected to underwent monotonic, cyclic, and reversed cyclic torsion until failure.
Results
Regardless of material type, ductile fracture governed the behavior under monotonic loading and brittle failure under cyclic and reversed cyclic loadings. Specimens with a ± 45° infill orientation outperformed their 0°/90° counterparts across all materials, with PLA Premium exhibiting superior performance compared to PLA and PLA Tough. Importantly, it was demonstrated that the previously-proposed multilinear idealized shear stress-shear strain curve, developed for monotonic loading of 15 different polymers, also applies to the envelope curves of cyclic and reversed cyclic loading in PLA-based polymers. Thus, it is useful as material model input for numerical simulation purposes.
Publisher
Springer Science and Business Media LLC
Reference66 articles.
1. Tan LJ, Zhu W, Zhou K (2020) Recent progress on polymer materials for additive manufacturing. Adv Func Mater 30(43):2003062. https://doi.org/10.1002/adfm.202003062
2. Website (industrytoday.com) (2021) Global 3D printing products and services market size from 2020 to 2026 (in billion U.S. dollars). Statista. Statista Inc. https://www.statista.com/statistics/315386/global-market-for-3d-printers/. Accessed 15 Oct 2023
3. Sharma S, Gupta V, Mudgal D (2023) Experimental investigations on polydopamine coated poly lactic acid based biomaterial fabricated using 3D printing for orthopedic applications. Mater Chem Phys 310:128473. https://doi.org/10.1016/j.matchemphys.2023.128473
4. Dadashi A, Azadi M (2023) Experimental bending fatigue data of additive-manufactured PLA biomaterial fabricated by different 3D printing parameters. Progress in Additive Manufacturing 8(2):255–263. https://doi.org/10.1007/s40964-022-00327-1
5. Truszkiewicz E, Thalhamer A, Rossegger M, Vetter M, Meier G, Rossegger E, ... and Berer M (2022) Mechanical behavior of 3D‐printed polymeric metamaterials for lightweight applications. J Appl Polym Sci 139(6):51618. https://doi.org/10.1002/app.51618