A deep learning-based compression and classification technique for whole slide histopathology images

Author:

Barsi Agnes,Nayak Suvendu Chandan,Parida Sasmita,Shukla Raj ManiORCID

Abstract

AbstractThis paper presents an autoencoder-based neural network architecture to compress histopathological images while retaining the denser and more meaningful representation of the original images. Current research into improving compression algorithms is focused on methods allowing lower compression rates for Regions of Interest (ROI-based approaches). Neural networks are great at extracting meaningful semantic representations from images and, therefore can select the regions to be considered of interest for the compression process. In this work, we focus on the compression of whole slide histopathology images. The objective is to build an ensemble of neural networks that enables a compressive autoencoder in a supervised fashion to retain a denser and more meaningful representation of the input histology images. Our proposed system is a simple and novel method to supervise compressive neural networks. We test the compressed images using transfer learning-based classifiers and show that they provide promising accuracy and classification performance.

Publisher

Springer Science and Business Media LLC

Reference26 articles.

1. Fu X, Wang M, Cao X, Ding X , Zha Z-J (2021) A model-driven deep unfolding method for jpeg artifacts removal. IEEE Trans Neural Netw Learn Syst

2. Ushasukhanya S, Jothilakshmi S, Sridhar S (2023) Development and optimization of deep convolutional neural network using Taguchi method for real-time electricity conservation system. Int J Inf Technol 15:1521–1534

3. Pattnaik RK et al (2023) Breast cancer detection and classification using metaheuristic optimized ensemble extreme learning machine. Int J Inf Technol 15:4551–4563

4. Hussain AJ, Al-Fayadh A, Radi N (2018) Image compression techniques: a survey in lossless and lossy algorithms. Neurocomputing 300:44–69

5. Griffin J, Treanor DE (2017) Digital pathology in clinical use: where are we now and what is holding us back? Histopathology 70:134–145

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3