Scale of effect of landscape patterns on resource selection by bobcats (Lynx rufus) in a multi-use rangeland system

Author:

Branney Aidan B.,Dutt Amanda M. Veals,Wardle Zachary M.,Tanner Evan P.,Tewes Michael E.,Cherry Michael J.

Abstract

Abstract Context There is a growing appreciation that wildlife behavioral responses to environmental conditions are scale-dependent and that identifying the scale where the effect of an environmental variable on a behavior is the strongest (i.e., scale of effect) can reveal how animals perceive and respond to their environment. In South Texas, brush management often optimizes agricultural and wildlife management objectives through the precise interspersion of vegetation types creating novel environments which likely affect animal behavior at multiple scales. There is a lack of understanding of how and at what scales this management regime and associated landscape patterns influence wildlife. Objectives Our objective was to examine the scale at which landscape patterns had the strongest effect on wildlife behavior. Bobcats (Lynx rufus) our model species, are one of the largest obligated carnivores in the system, and have strong associations with vegetation structure and prey density, two aspects likely to influenced by landscape patterns. We conducted a multiscale resource selection analysis to identify the characteristic scale where landscape patterns had the strongest effect on resource selection. Methods We examined resource selection within the home range for 9 bobcats monitored from 2021 to 2022 by fitting resource selection functions which included variables representing landcover, water, energy infrastructure, and landscape metrics (edge density, patch density, and contagion). We fit models using landscape metrics calculated at 10 different scales and compared model performance to identify the scale of effect of landscape metrics on resource selection. Results The scale of effect of landscape metrics occurred at finer scales. The characteristic scale for edge density and patch density was 30 m (the finest scale examined), and the characteristic scale for contagion occurred at 100 m. Bobcats avoided locations with high woody patch density and selected for greater woody edge density and contagion. Bobcats selected areas closer to woody vegetation and water bodies while avoiding herbaceous cover and energy development infrastructure. Conclusions A key step in understanding the effect of human development and associated landscape patterns on animal behavior is the identifying the scale of effect. We found support for our hypothesis that resource selection would be most strongly affected by landscape configuration at finer scales. Our study demonstrates the importance of cross-scale comparisons when examining the effects of landscape attributes on animal behavior.

Funder

Tim and Karen Hixon Foundation

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3