Abstract
AbstractIn this paper we investigate the spectra and the ergodic properties of the multiplication operators and the convolution operators acting on the Schwartz space $${\mathcal S}({\mathbb R})$$
S
(
R
)
of rapidly decreasing functions, i.e., operators of the form $$M_h: {\mathcal S}({\mathbb R})\rightarrow {\mathcal S}({\mathbb R})$$
M
h
:
S
(
R
)
→
S
(
R
)
, $$f \mapsto h f $$
f
↦
h
f
, and $$C_T:{\mathcal S}({\mathbb R})\rightarrow {\mathcal S}({\mathbb R})$$
C
T
:
S
(
R
)
→
S
(
R
)
, $$f\mapsto T\star f$$
f
↦
T
⋆
f
. Precisely, we determine their spectra and characterize when those operators are power bounded and mean ergodic.
Publisher
Springer Science and Business Media LLC
Reference26 articles.
1. Albanese, A.A., Bonet, J., Ricker, W.J.: Mean ergodic operators in Fréchet spaces. Ann. Acad. Sci. Fenn. Math. 34, 401–436 (2009)
2. Albanese, A.A., Bonet, J., Ricker, W.J.: $$C_0$$-semigroups and mean ergodic operators in a class of Fréchet spaces. J. Math. Anal. Appl. 365, 142–157 (2010)
3. Albanese, A.A., Bonet, J., Ricker, W.J.: Gröthendieck spaces with the Dunford-Pettis property. Positivity 14, 145–164 (2010)
4. Albanese, A.A., Bonet, J., Ricker, W.J.: Convergence of arithmetic means of operators in Fréchet spaces. J. Math. Anal. Appl. 401, 160–173 (2013)
5. Albanese, A.A., Bonet, J., Ricker, W.J.: Montel resolvents and uniformly mean ergodic semigroups of linear operators. Quaest. Math. 36, 253–290 (2013)
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献