Abstract
AbstractWe consider a Dirichlet problem driven by the anisotropic (p, q)-Laplacian and with a reaction that has the competing effects of a singular term and of a parametric superlinear perturbation. Based on variational tools along with truncation and comparison techniques, we prove a bifurcation-type result describing the changes in the set of positive solutions as the parameter varies.
Funder
Technische Universität Berlin
Publisher
Springer Science and Business Media LLC
Reference26 articles.
1. Bahrouni, A., Radulescu, V.D., Repovs, D.: Double phase transonic flow problems with variable growth: nonlinear patterns and stationary waves. Nonlinearity 32(7), 2481–2495 (2019)
2. Byun, S. S., Ko, E.: Global $$C^{1,\alpha }$$ regularity and existence of multiple solutions for singular $$p(x)$$-Laplacian equations, Calc. Var. Partial Differential Equations 56 (2017), no. 5, Paper No. 76, 29 pp
3. Cherfils, L., Il’yasov, Y.: On the stationary solutions of generalized reaction diffusion equations with p&q-Laplacian. Commun. Pure Appl. Anal. 4(1), 9–22 (2005)
4. Diening, L., Harjulehto, P., Hasto, P., Ruzicka, M.: Lebesgue and Sobolev spaces with variable exponents. Springer, Heidelberg (2011)
5. Fan, X., Zhao, D.: A class of De Giorgi type and Hölder continuity. Nonlinear Anal. 36(3), 295–318 (1999)
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献