The packing fraction of the oxygen sublattice: its impact on the heat of mixing

Author:

Benisek Artur,Dachs Edgar

Abstract

AbstractThe heat of mixing of some petrological relevant substitutions (i.e., Mg-Al, Si-Al, Mg-Ti, Mg-Ca, and Mg-Fe) was investigated systematically in silicates, titanates, tungstates, carbonates, oxides, hydroxides, and sulphates by density functional theory calculations (e.g., melilite, chlorite, biotite, brucite, cordierite, amphibole, talc, pseudobrookite, pyroxene, olivine, wadsleyite, ilmenite, MgWO4, ringwoodite (spinel), perovskite, pyrope-grossular, magnesite-calcite, MgO-CaO, anhydrous and different hydrated MgSO4). A specific substitution is characterised by different microscopic interaction energies in different minerals, e.g., the octahedral Mg-Al exchange on a single crystallographic site in pyroxene has a microscopic interaction energy that is more than twice compared to that in biotite. A comparative investigation of the heat of mixing using microscopic interaction energies on a single crystallographic site has the advantage that they are not influenced by cation ordering. They could be successfully correlated with the stiffnesses of the minerals, which in turn were scaled to the oxygen packing fraction, a parameter that is easily available for poorly investigated minerals. With this information, the interaction energies of a certain substitution can be transferred from minerals where they are well-known to mineral groups where they are less- or unknown. Using the cross-site terms and the microscopic interaction energies, the macroscopic interaction energies of the coupled substitution, e.g., Mg + Si = Al + Al, of biotite and pyroxene were calculated, which are, however, affected by cation ordering and different degrees of local charge balance, for which appropriate models are necessary.

Funder

Austrian Science Fund

Paris Lodron University of Salzburg

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3