Skip to main content

Advertisement

Log in

Association of birthweight and risk of incident dementia: a prospective cohort study

  • ORIGINAL ARTICLE
  • Published:
GeroScience Aims and scope Submit manuscript

Abstract

Given the epidemiological studies investigating the relationship between birthweight and dementia are limited. Our study aimed to explore the association between birthweight and the risk of dementia, cognitive function, and brain structure. We included 275,648 participants from the UK Biobank, categorizing birthweight into quartiles (Q1 ≤ 2.95 kg; Q2 > 2.95 kg, ≤ 3.32 kg; Q3 > 3.32 kg, ≤ 3.66 kg; Q4 > 3.66 kg), with Q3 as the reference. Cox regression models and restricted cubic splines estimated the relationship between birthweight and the risk of all causes of dementia (ACD), Alzheimer’s disease (AD), and vascular dementia (VD). Multivariable linear regression models assessed the relationship between birthweight, cognitive function, and MRI biomarkers. Over a median follow-up of 13.0 years, 3103 incident dementia cases were recorded. In the fully adjusted model, compared to Q3 (> 3.32 kg, ≤ 3.66 kg), lower birthweight in Q1 (≤ 2.95 kg) was significantly associated with increased risk of ACD (HR = 1.18, 95%CI 1.06–1.30, P = 0.001) and VD (HR = 1.32, 95%CI 1.07–1.62, P = 0.010), but no significant association with AD was found. Continuous birthweight showed a U-shaped nonlinear association with dementia. Lower birthweight was associated with worse performance in cognitive tasks, including reaction time, fluid intelligence, numeric, and prospective memory. Additionally, certain brain structure indices were identified, including brain atrophy and reductions in area, thickness, and volume of regional subcortical areas. Our study emphasizes the association between lower birthweight and increased dementia risk, correlating cognitive function and MRI biomarkers of brain structure, suggesting that in utero or early-life exposures might impact cognitive health in adulthood.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from UK Biobank but restrictions apply to the availability of these data, which were used under license for the current study, and so are not publicly available. All participants provided informed consent through electronic signature at baseline assessment.

References

  1. Baumgart M, Snyder HM, Carrillo MC, Fazio S, Kim H, Johns H. Summary of the evidence on modifiable risk factors for cognitive decline and dementia: a population-based perspective. Alzheimers Dement. 2015;11(6):718–26. https://doi.org/10.1016/j.jalz.2015.05.016.

    Article  PubMed  Google Scholar 

  2. Livingston G, Huntley J, Sommerlad A, Ames D, Ballard C, Banerjee S, Brayne C, Burns A, Cohen-Mansfield J, Cooper C, Costafreda SG, Dias A, Fox N, Gitlin LN, Howard R, Kales HC, Kivimaki M, Larson EB, Ogunniyi A, Orgeta V, Ritchie K, Rockwood K, Sampson EL, Samus Q, Schneider LS, Selbaek G, Teri L, Mukadam N. Dementia prevention, intervention, and care: 2020 report of the lancet commission. Lancet. 2020;396(10248):413–46. https://doi.org/10.1016/S0140-6736(20)30367-6.

    Article  PubMed  PubMed Central  Google Scholar 

  3. de Kieviet JF, Zoetebier L, van Elburg RM, Vermeulen RJ, Oosterlaan J. Brain development of very preterm and very low-birthweight children in childhood and adolescence: a meta-analysis. Dev Med Child Neurol. 2012;54(4):313–23. https://doi.org/10.1111/j.1469-8749.2011.04216.x.

    Article  PubMed  Google Scholar 

  4. Raznahan A, Greenstein D, Lee NR, Clasen LS, Giedd JN. Prenatal growth in humans and postnatal brain maturation into late adolescence. Proc Natl Acad Sci U S A. 2012;109(28):11366–71. https://doi.org/10.1073/pnas.1203350109.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  5. Taylor HG, Filipek PA, Juranek J, Bangert B, Minich N, Hack M. Brain volumes in adolescents with very low birth weight: effects on brain structure and associations with neuropsychological outcomes. Dev Neuropsychol. 2011;36(1):96–117. https://doi.org/10.1080/87565641.2011.540544.

    Article  PubMed  Google Scholar 

  6. Wang X, Dong Y, Zou Z, Ma J, Yang Z, Gao D, Li Y, Nguyen MT (2019) Low birthweight is associated with higher risk of high blood pressure in chinese girls: results from a national cross-sectional study in china. Int J Environ Res Public Health 16(16). https://doi.org/10.3390/ijerph16162898

  7. Stern Y. Cognitive reserve in ageing and alzheimer’s disease. Lancet Neurol. 2012;11(11):1006–12. https://doi.org/10.1016/S1474-4422(12)70191-6.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Victora CG, Adair L, Fall C, Hallal PC, Martorell R, Richter L, Sachdev HS. Maternal and child undernutrition: consequences for adult health and human capital. Lancet. 2008;371(9609):340–57. https://doi.org/10.1016/S0140-6736(07)61692-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Aarestrup J, Bjerregaard LG, Meyle KD, Pedersen DC, Gjærde LK, Jensen BW, Baker JL. Birthweight, childhood overweight, height and growth and adult cancer risks: a review of studies using the copenhagen school health records register. Int J Obes (Lond). 2020;44(7):1546–60. https://doi.org/10.1038/s41366-020-0523-9.

    Article  PubMed  Google Scholar 

  10. Harder T, Rodekamp E, Schellong K, Dudenhausen JW, Plagemann A. Birth weight and subsequent risk of type 2 diabetes: a meta-analysis. Am J Epidemiol. 2007;165(8):849–57. https://doi.org/10.1093/aje/kwk071.

    Article  PubMed  Google Scholar 

  11. Lawlor DA, Ronalds G, Clark H, Smith GD, Leon DA. Birth weight is inversely associated with incident coronary heart disease and stroke among individuals born in the 1950s: findings from the aberdeen children of the 1950s prospective cohort study. Circulation. 2005;112(10):1414–8. https://doi.org/10.1161/CIRCULATIONAHA.104.528356.

    Article  PubMed  Google Scholar 

  12. Liang J, Xu C, Liu Q, Fan X, Xu J, Zhang L, Hang D, Shang H, Gu A. Association between birth weight and risk of cardiovascular disease: evidence from uk biobank. Nutr Metab Cardiovasc Dis. 2021;31(9):2637–43. https://doi.org/10.1016/j.numecd.2021.05.017.

    Article  PubMed  Google Scholar 

  13. Volpe JJ. Brain injury in premature infants: a complex amalgam of destructive and developmental disturbances. Lancet Neurol. 2009;8(1):110–24. https://doi.org/10.1016/S1474-4422(08)70294-1.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Mosing MA, Lundholm C, Cnattingius S, Gatz M, Pedersen NL. Associations between birth characteristics and age-related cognitive impairment and dementia: a registry-based cohort study. PLoS Med. 2018;15(7): e1002609. https://doi.org/10.1371/journal.pmed.1002609.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Luo J, Ma Y, Agboola FJ, Grant E, Morris JC, Mcdade E, Fagan AM, Benzinger T, Hassenstab J, Bateman RJ, Perrin RJ, Gordon BA, Goyal M, Strain JF, Yakushev I, Day GS, Xiong C. Longitudinal relationships of white matter hyperintensities and alzheimer disease biomarkers across the adult life span. Neurology. 2023;101(2):e164–77. https://doi.org/10.1212/WNL.0000000000207378.

    Article  CAS  PubMed  Google Scholar 

  16. Dubois B, von Arnim C, Burnie N, Bozeat S, Cummings J. Biomarkers in alzheimer’s disease: role in early and differential diagnosis and recognition of atypical variants. Alzheimers Res Ther. 2023;15(1):175. https://doi.org/10.1186/s13195-023-01314-6.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Steward A, Biel D, Dewenter A, Roemer S, Wagner F, Dehsarvi A, Rathore S, Otero SD, Higgins I, Brendel M, Dichgans M, Shcherbinin S, Ewers M, Franzmeier N. Apoe4 and connectivity-mediated spreading of tau pathology at lower amyloid levels. JAMA Neurol. 2023;80(12):1295–306. https://doi.org/10.1001/jamaneurol.2023.4038.

    Article  PubMed  Google Scholar 

  18. Khera AV, Chaffin M, Aragam KG, Haas ME, Roselli C, Choi SH, Natarajan P, Lander ES, Lubitz SA, Ellinor PT, Kathiresan S. Genome-wide polygenic scores for common diseases identify individuals with risk equivalent to monogenic mutations. Nat Genet. 2018;50(9):1219–24. https://doi.org/10.1038/s41588-018-0183-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wu WT, Li YJ, Feng AZ, Li L, Huang T, Xu AD, Lyu J. Data mining in clinical big data: the frequently used databases, steps, and methodological models. Mil Med Res. 2021;8(1):44. https://doi.org/10.1186/s40779-021-00338-z.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Collins R. What makes uk biobank special? Lancet. 2012;379(9822):1173–4. https://doi.org/10.1016/S0140-6736(12)60404-8.

    Article  PubMed  Google Scholar 

  21. Ding J, Sigurðsson S, Jónsson PV, Eiriksdottir G, Charidimou A, Lopez OL, van Buchem MA, Guðnason V, Launer LJ. Large perivascular spaces visible on magnetic resonance imaging, cerebral small vessel disease progression, and risk of dementia: the age, gene/environment susceptibility-reykjavik study. JAMA Neurol. 2017;74(9):1105–12. https://doi.org/10.1001/jamaneurol.2017.1397.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Fawns-Ritchie C, Deary IJ. Reliability and validity of the uk biobank cognitive tests. PLoS ONE. 2020;15(4): e231627. https://doi.org/10.1371/journal.pone.0231627.

    Article  CAS  Google Scholar 

  23. Alfaro-Almagro F, Jenkinson M, Bangerter NK, Andersson J, Griffanti L, Douaud G, Sotiropoulos SN, Jbabdi S, Hernandez-Fernandez M, Vallee E, Vidaurre D, Webster M, Mccarthy P, Rorden C, Daducci A, Alexander DC, Zhang H, Dragonu I, Matthews PM, Miller KL, Smith SM. Image processing and quality control for the first 10,000 brain imaging datasets from uk biobank. Neuroimage. 2018;166:400–24. https://doi.org/10.1016/j.neuroimage.2017.10.034.

    Article  PubMed  Google Scholar 

  24. Crane PK, Groot C, Ossenkoppele R, Mukherjee S, Choi SE, Lee M, Scollard P, Gibbons LE, Sanders RE, Trittschuh E, Saykin AJ, Mez J, Nakano C, Donald CM, Sohi H, Risacher S. Cognitively defined alzheimer’s dementia subgroups have distinct atrophy patterns. Alzheimers Dement. 2023. https://doi.org/10.1002/alz.13567.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Maximov II, Alnaes D, Westlye LT. Towards an optimised processing pipeline for diffusion magnetic resonance imaging data: effects of artefact corrections on diffusion metrics and their age associations in uk biobank. Hum Brain Mapp. 2019;40(14):4146–62. https://doi.org/10.1002/hbm.24691.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Desikan RS, Ségonne F, Fischl B, Quinn BT, Dickerson BC, Blacker D, Buckner RL, Dale AM, Maguire RP, Hyman BT, Albert MS, Killiany RJ. An automated labeling system for subdividing the human cerebral cortex on mri scans into gyral based regions of interest. Neuroimage. 2006;31(3):968–80. https://doi.org/10.1016/j.neuroimage.2006.01.021.

    Article  PubMed  Google Scholar 

  27. Jansen IE, Savage JE, Watanabe K, Bryois J, Williams DM, Steinberg S, Sealock J, Karlsson IK, Hägg S, Athanasiu L, Voyle N, Proitsi P, Witoelar A, Stringer S, Aarsland D, Almdahl IS, Andersen F, Bergh S, Bettella F, Bjornsson S, Brækhus A, Bråthen G, de Leeuw C, Desikan RS, Djurovic S, Dumitrescu L, Fladby T, Hohman TJ, Jonsson PV, Kiddle SJ, Rongve A, Saltvedt I, Sando SB, Selbæk G, Shoai M, Skene NG, Snaedal J, Stordal E, Ulstein ID, Wang Y, White LR, Hardy J, Hjerling-Leffler J, Sullivan PF, van der Flier WM, Dobson R, Davis LK, Stefansson H, Stefansson K, Pedersen NL, Ripke S, Andreassen OA, Posthuma D. Genome-wide meta-analysis identifies new loci and functional pathways influencing alzheimer’s disease risk. Nat Genet. 2019;51(3):404–13. https://doi.org/10.1038/s41588-018-0311-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ling Y, Yuan S, Huang X, Tan S, Huang T, Xu A, Lyu J. The association of night shift work with the risk of all-cause dementia and alzheimer’s disease: a longitudinal study of 245,570 uk biobank participants. J Neurol. 2023. https://doi.org/10.1007/s00415-023-11672-8.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Bycroft C, Freeman C, Petkova D, Band G, Elliott LT, Sharp K, Motyer A, Vukcevic D, Delaneau O, O’Connell J, Cortes A, Welsh S, Young A, Effingham M, Mcvean G, Leslie S, Allen N, Donnelly P, Marchini J. The uk biobank resource with deep phenotyping and genomic data. Nature. 2018;562(7726):203–9. https://doi.org/10.1038/s41586-018-0579-z.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  30. Harville EW, Guralnik J, Romero M, Bazzano LA. Reproductive history and cognitive aging: the bogalusa heart study. Am J Geriatr Psychiatry. 2020;28(2):217–25. https://doi.org/10.1016/j.jagp.2019.07.002.

    Article  PubMed  Google Scholar 

  31. Lynch J, Smith GD. A life course approach to chronic disease epidemiology. Annu Rev Public Health. 2005;26:1–35. https://doi.org/10.1146/annurev.publhealth.26.021304.144505.

    Article  PubMed  Google Scholar 

  32. Nosarti C. Social relationships, preterm birth or low birth weight, and the brain. JAMA Netw Open. 2019;2(7): e196960. https://doi.org/10.1001/jamanetworkopen.2019.6960.

    Article  PubMed  Google Scholar 

  33. Rees S, Harding R, Walker D. The biological basis of injury and neuroprotection in the fetal and neonatal brain. Int J Dev Neurosci. 2011;29(6):551–63. https://doi.org/10.1016/j.ijdevneu.2011.04.004.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Landrigan PJ, Raps H, Cropper M, Bald C, Brunner M, Canonizado EM, Charles D, Chiles TC, Donohue MJ, Enck J, Fenichel P, Fleming LE, Ferrier-Pages C, Fordham R, Gozt A, Griffin C, Hahn ME, Haryanto B, Hixson R, Ianelli H, James BD, Kumar P, Laborde A, Law KL, Martin K, Mu J, Mulders Y, Mustapha A, Niu J, Pahl S, Park Y, Pedrotti ML, Pitt JA, Ruchirawat M, Seewoo BJ, Spring M, Stegeman JJ, Suk W, Symeonides C, Takada H, Thompson RC, Vicini A, Wang Z, Whitman E, Wirth D, Wolff M, Yousuf AK, Dunlop S. The minderoo-monaco commission on plastics and human health. Ann Glob Health. 2023;89(1):23. https://doi.org/10.5334/aogh.4056.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Christians JK, Ahmadzadeh-Seddeighi S, Bilal A, Bogdanovic A, Ho R, Leung EV, Macgregor MA, Nadasdy NM, Principe GM. Sex differences in the effects of prematurity and/or low birthweight on neurodevelopmental outcomes: systematic review and meta-analyses. Biol Sex Differ. 2023;14(1):47. https://doi.org/10.1186/s13293-023-00532-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ogata R, Watanabe K, Chong PF, Okamoto J, Sakemi Y, Nakashima T, Ohno T, Nomiyama H, Sonoda Y, Ichimiya Y, Inoue H, Ochiai M, Yamashita H, Sakai Y, Ohga S. Divergent neurodevelopmental profiles of very-low-birth-weight infants. Pediatr Res. 2023. https://doi.org/10.1038/s41390-023-02778-w.

    Article  PubMed  Google Scholar 

  37. Martini S, Lenzi J, Paoletti V, Maffei M, Toni F, Fetta A, Aceti A, Cordelli DM, Zuccarini M, Guarini A, Sansavini A, Corvaglia L. Neurodevelopmental correlates of brain magnetic resonance imaging abnormalities in extremely low-birth-weight infants. J Pediatr. 2023;262: 113646. https://doi.org/10.1016/j.jpeds.2023.113646.

    Article  PubMed  Google Scholar 

  38. Wachinger C, Salat DH, Weiner M, Reuter M. Whole-brain analysis reveals increased neuroanatomical asymmetries in dementia for hippocampus and amygdala. Brain. 2016;139(Pt 12):3253–66. https://doi.org/10.1093/brain/aww243.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Zonneveld HI, Roshchupkin GV, Adams H, Gutman BA, van der Lugt A, Niessen WJ, Vernooij MW, Ikram MA. High-dimensional mapping of cognition to the brain using voxel-based morphometry and subcortical shape analysis. J Alzheimers Dis. 2019;71(1):141–52. https://doi.org/10.3233/JAD-181297.

    Article  PubMed  Google Scholar 

  40. van der Velpen IF, Vlasov V, Evans TE, Ikram MK, Gutman BA, Roshchupkin GV, Adams HH, Vernooij MW, Ikram MA. Subcortical brain structures and the risk of dementia in the rotterdam study. Alzheimers Dement. 2023;19(2):646–57. https://doi.org/10.1002/alz.12690.

    Article  PubMed  Google Scholar 

  41. Pettigrew C, Soldan A. Defining cognitive reserve and implications for cognitive aging. Curr Neurol Neurosci Rep. 2019;19(1):1. https://doi.org/10.1007/s11910-019-0917-z.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Bjuland KJ, Løhaugen GC, Martinussen M, Skranes J. Cortical thickness and cognition in very-low-birth-weight late teenagers. Early Hum Dev. 2013;89(6):371–80. https://doi.org/10.1016/j.earlhumdev.2012.12.003.

    Article  PubMed  Google Scholar 

  43. Karolis VR, Froudist-Walsh S, Kroll J, Brittain PJ, Tseng CJ, Nam KW, Reinders A, Murray RM, Williams S, Thompson PM, Nosarti C. Volumetric grey matter alterations in adolescents and adults born very preterm suggest accelerated brain maturation. Neuroimage. 2017;163:379–89. https://doi.org/10.1016/j.neuroimage.2017.09.039.

    Article  PubMed  Google Scholar 

  44. Farajdokht F, Sadigh-Eteghad S, Dehghani R, Mohaddes G, Abedi L, Bughchechi R, Majdi A, Mahmoudi J. Very low birth weight is associated with brain structure abnormalities and cognitive function impairments: a systematic review. Brain Cogn. 2017;118:80–9. https://doi.org/10.1016/j.bandc.2017.07.006.

    Article  PubMed  Google Scholar 

  45. Aanes S, Bjuland KJ, Skranes J, Løhaugen GC. Memory function and hippocampal volumes in preterm born very-low-birth-weight (vlbw) young adults. Neuroimage. 2015;105:76–83. https://doi.org/10.1016/j.neuroimage.2014.10.023.

    Article  PubMed  Google Scholar 

  46. Johnson FW. Biological factors and psychometric intelligence: a review. Genet Soc Gen Psychol Monogr. 1991;117(3):313–57.

    CAS  PubMed  Google Scholar 

  47. Lee KS, Eom JS, Cheong HK, Oh BH, Hong CH. Effects of head circumference and metabolic syndrome on cognitive decline. Gerontology. 2010;56(1):32–8. https://doi.org/10.1159/000236028.

    Article  CAS  PubMed  Google Scholar 

  48. Scuteri A, Lattanzio F, Bernabei R. Life-course approach to chronic disease: the active and healthy aging perspective. J Am Geriatr Soc. 2016;64(9):e59–61. https://doi.org/10.1111/jgs.14271.

    Article  PubMed  Google Scholar 

  49. Li Y, Ley SH, Tobias DK, Chiuve SE, Vanderweele TJ, Rich-Edwards JW, Curhan GC, Willett WC, Manson JE, Hu FB, Qi L. Birth weight and later life adherence to unhealthy lifestyles in predicting type 2 diabetes: prospective cohort study. BMJ. 2015;351: h3672. https://doi.org/10.1136/bmj.h3672.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Lyall DM, Inskip HM, Mackay D, Deary IJ, Mcintosh AM, Hotopf M, Kendrick T, Pell JP, Smith DJ. Low birth weight and features of neuroticism and mood disorder in 83 545 participants of the uk biobank cohort. BJPsych Open. 2016;2(1):38–44. https://doi.org/10.1192/bjpo.bp.115.002154.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Ye J, Wu C, Chu X, Wen Y, Li P, Cheng B, Cheng S, Liu L, Zhang L, Ma M, Qi X, Liang C, Kafle OP, Jia Y, Wang S, Wang X, Ning Y, Zhang F. Evaluating the effect of birth weight on brain volumes and depression: an observational and genetic study using uk biobank cohort. Eur Psychiatry. 2020;63(1): e73. https://doi.org/10.1192/j.eurpsy.2020.74.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Harris SL, Bray H, Troughton R, Elliott J, Frampton C, Horwood J, Darlow BA. Cardiovascular outcomes in young adulthood in a population-based very low birth weight cohort. J Pediatr. 2020;225:74–9. https://doi.org/10.1016/j.jpeds.2020.06.023.

    Article  PubMed  Google Scholar 

  53. Reitz C. Genetic diagnosis and prognosis of alzheimer’s disease: challenges and opportunities. Expert Rev Mol Diagn. 2015;15(3):339–48. https://doi.org/10.1586/14737159.2015.1002469.

    Article  MathSciNet  CAS  PubMed  PubMed Central  Google Scholar 

  54. Migliore L, Coppedè F. Gene-environment interactions in alzheimer disease: the emerging role of epigenetics. Nat Rev Neurol. 2022;18(11):643–60. https://doi.org/10.1038/s41582-022-00714-w.

    Article  CAS  PubMed  Google Scholar 

  55. Gauvrit T, Benderradji H, Buée L, Blum D, Vieau D. Early-life environment influence on late-onset alzheimer’s disease. Front Cell Dev Biol. 2022;10: 834661. https://doi.org/10.3389/fcell.2022.834661.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Jaworowicz DJ, Nie J, Bonner MR, Han D, Vito D, Hutson A, Potischman N, Trevisan M, Muti P, Freudenheim JL. Agreement between self-reported birth weight and birth certificate weights. J Dev Orig Health Dis. 2010;1(2):106–13. https://doi.org/10.1017/S2040174410000012.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The project was supported by Guangdong Provincial Key Laboratory of Traditional Chinese Medicine Informatization (2021B1212040007), Clinical Frontier Technology Program of the First Affiliated Hospital of Jinan University, China (No. JNU1AF-CFTP-2022-a01235), and the Science and Technology Projects in Guangzhou, China (No. 202201020054, No. 2023A03J1032).

Author information

Authors and Affiliations

Authors

Contributions

XH, SY, and YL guided the literature review and planned the analyses. HC and ST extracted the data from the UK database. JL and AX conceptualized the research aims. NH, SL, and LH participated in data analysis and interpretation. XH and SY wrote the first draft of the paper and the other authors provided comments and approved the final manuscript. JL and AX read and approved the final manuscript.

Corresponding authors

Correspondence to Anding Xu or Jun Lyu.

Ethics declarations

Ethics approval

The UK Biobank study was approved by the Northwest Multi-centre Research Ethics Committee. The procedures used in this study adhere to the tenets of the Declaration of Helsinki.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 696 KB)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, X., Yuan, S., Ling, Y. et al. Association of birthweight and risk of incident dementia: a prospective cohort study. GeroScience (2024). https://doi.org/10.1007/s11357-024-01105-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11357-024-01105-3

Keywords

Navigation