Geroprotective potential of microbiome modulators in the Caenorhabditis elegans model

Author:

Miller Brandi C.,Mathai Megha,Yadav Hariom,Jain ShaliniORCID

Abstract

AbstractAging is associated with cellular and physiological changes, which significantly reduce the quality of life and increase the risk for disease. Geroprotectors improve lifespan and slow the progression of detrimental aging-related changes such as immune system senescence, mitochondrial dysfunction, and dysregulated nutrient sensing and metabolism. Emerging evidence suggests that gut microbiota dysbiosis is a hallmark of aging-related diseases and microbiome modulators, such as probiotics (live bacteria) or postbiotics (non-viable bacteria/bacterial byproducts) may be promising geroprotectors. However, because they are strain-specific, the geroprotective effects of probiotics and postbiotics remain poorly understood and understudied. Drosophila melanogaster, Caenorhabditis elegans, and rodents are well-validated preclinical models for studying lifespan and the role of probiotics and/or postbiotics, but each have their limitations, including cost and their translation to human aging biology. C. elegans is an excellent model for large-scale screening to determine the geroprotective potential of drugs or probiotics/postbiotics due to its short lifecycle, easy maintenance, low cost, and homology to humans. The purpose of this article is to review the geroprotective effects of microbiome modulators and their future scope, using C. elegans as a model. The proposed geroprotective mechanisms of these probiotics and postbiotics include delaying immune system senescence, preventing or reducing mitochondrial dysfunction, and regulating food intake (dietary restriction) and metabolism. More studies are warranted to understand the geroprotective potential of probiotics and postbiotics, as well as other microbiome modulators, like prebiotics and fermented foods, and use them to develop effective therapeutics to extend lifespan and reduce the risk of debilitating aging-related diseases.

Funder

Florida Department of Health

National Institute of Health

Publisher

Springer Science and Business Media LLC

Subject

Geriatrics and Gerontology,Aging

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3