Digital Twin and Deep Reinforcement Learning-Driven Robotic Automation System for Confined Workspaces: A Nozzle Dam Replacement Case Study in Nuclear Power Plants

Author:

Park Su-Young,Lee Cheonghwa,Jeong Suhwan,Lee Junghyuk,Kim Dohyeon,Jang Youhyun,Seol Woojin,Kim Hyungjung,Ahn Sung-HoonORCID

Abstract

AbstractRobotic automation has emerged as a leading solution for replacing human workers in dirty, dangerous, and demanding industries to ensure the safety of human workers. However, practical implementation of this technology remains limited, requiring substantial effort and costs. This study addresses the challenges specific to nuclear power plants, characterized by hazardous environments and physically demanding tasks such as nozzle dam replacement in confined workspaces. We propose a digital twin and deep-reinforcement-learning-driven robotic automation system with an autonomous mobile manipulator. The study follows a four-step process. First, we establish a simplified testbed for a nozzle dam replacement task and implement a high-fidelity digital twin model of the real-world testbed. Second, we employ a hybrid visual perception system that combines deep object pose estimation and an iterative closest point algorithm to enhance the accuracy of the six-dimensional pose estimation. Third, we use a deep-reinforcement-learning method, particularly the proximal policy optimization algorithm with inverse reachability map, and a centroidal waypoint strategy, to improve the controllability of an autonomous mobile manipulator. Finally, we conduct pre-performed simulations of the nozzle dam replacement in the digital twin and evaluate the system on a robot in the real-world testbed. The nozzle dam replacement with precise object pose estimation, navigation, target object grasping, and collision-free motion generation was successful. The robotic automation system achieved a $$92.0\%$$ 92.0 % success rate in the digital twin. Our proposed method can improve the efficiency and reliability of robotic automation systems for extreme workspaces and other perilous environments.

Funder

KOREA HYDRO & NUCLEAR POWER CO., LTD

National Research Foundation of Korea

Seoul National University

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3