Combining Carbon Nanoparticle Coatings and Laser Surface Texturing for Enhanced Lubricity Under High Loads

Author:

MacLucas T.,Grützmacher P. G.,Leonhard-Trautmann P.,Suarez S.,Gachot C.,Mücklich F.

Abstract

AbstractDeveloping new lubrication concepts greatly contributes to improving the energy efficiency of mechanical systems. Nanoparticles such as those based on carbon allotropes or 2D materials have received widespread attention due to their outstanding mechanical and tribological performance. However, these systems are limited by a short wear life. Combining nanoparticle coatings with laser surface texturing has been demonstrated to substantially improve their durability due to the reservoir effect which prevents immediate particle removal from the contact. In this study, we investigate the high-load (20 N) tribological performance of AISI 304 austenitic stainless-steel substrates, which are line-patterned by laser interference patterning and subsequently coated with different carbon nanoparticle coatings (carbon nanotubes, carbon onions, carbon nanohorns) against alumina and 100Cr6 counter bodies. In addition to that, benchmark testing is performed with conventional solid lubricant coatings (graphite, MoS2, WS2). Electrophoretic deposition is used as the main coating technique along with air spraying (for WS2). All coatings substantially improve friction compared to the purely laser-patterned reference. Among all coating materials, carbon nanotubes demonstrate superior lubricity and the longest wear life against 100Cr6 and alumina counter bodies. Detailed characterization of the resulting wear tracks by energy-dispersive X-ray spectroscopy, scanning electron microscopy, and confocal laser scanning microscopy provides insights into the friction mechanisms of the various solid lubricant particles. Further, material transfer is identified as an important aspect for effective and long-lasting lubrication.

Funder

Deutsche Forschungsgemeinschaft

European Regional Development Fund

Österreichischer Wissenschaftsfonds

Universität des Saarlandes

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3