Abstract
AbstractThe properties of nanoparticle–polymer composites strongly depend on the network structure of the polymer matrix. By introducing nanoparticles into a monomer (solution) and subsequently polymerizing it, the formation of the polymer phase influences the mechanical and physicochemical properties of the composite. In this study, semi-conducting indium tin oxide (ITO) nanoparticles were prepared to form a rigid nanoparticle scaffold in which 1,6-hexanediol diacrylate (HDDA), together with an initiator for photo-polymerization, was infiltrated and subsequently polymerized by UV light. During this process, the polymerization reaction was characterized using rapid scan Kubelka–Munk FT-IR spectroscopy and compared to bulk HDDA. The conductivity change of the ITO nanoparticles was monitored and correlated with the polymerization process. It was revealed that the reaction rates of the radical initiation and chain propagation are reduced when cured inside the voids of the nanoparticle scaffold. The degree of conversion is lower for HDDA infiltrated into the mesoporous ITO nanoparticle scaffold compared to purely bulk-polymerized HDDA.
Graphical abstract
Funder
deutsche forschungsgemeinschaft
Fraunhofer Institute for Manufacturing Technology and Advanced Materials (IFAM)
Publisher
Springer Science and Business Media LLC
Subject
Mechanical Engineering,Mechanics of Materials,General Materials Science
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献