Author:
Engelhardt Sandy,Dar Salman Ul Hussan,Sharan Lalith,André Florian,Nagel Eike,Thomas Sarina
Publisher
Springer Science and Business Media LLC
Reference43 articles.
1. Bai W, Sinclair M, Tarroni G et al (2018) Automated cardiovascular magnetic resonance image analysis with fully convolutional networks. J Cardiovasc Magn Reson 20:65. https://doi.org/10.1186/s12968-018-0471-x
2. Koehler S, Kuhm J, Huffaker T et al (2024) Artificial Intelligence to derive aligned strain in cine CMR to detect patients with myocardial fibrosis: an open and scrutinizable approach. Res Sq rs.3.rs-3785677. https://doi.org/10.21203/rs.3.rs-3785677/v1
3. Lehmann DH, Gomes B, Vetter N et al (2024) Prediction of diagnosis and diastolic filling pressure by AI-enhanced cardiac MRI: a modelling study of hospital data. Lancet Digit Health 6:e407–e417. https://doi.org/10.1016/S2589-7500(24)00063-3
4. Lin A, Manral N, McElhinney P et al (2022) Deep learning-enabled coronary CT angiography for plaque and stenosis quantification and cardiac risk prediction: an international multicentre study. Lancet Digit Health 4:e256–e265. https://doi.org/10.1016/S2589-7500(22)00022-X
5. Thomas S, Gilbert A, Ben-Yosef G (2022) Light-weight Spatio-temporal graphs for segmentation and ejection fraction prediction in cardiac ultrasound. In: Wang L, Dou Q, Fletcher PT, Speidel S, Li S (eds) Medical image computing and computer assisted intervention—MICCAI, vol 2022. Springer Nature Switzerland, Cham, pp 380–390