Deep calibration of financial models: turning theory into practice

Author:

Büchel Patrick,Kratochwil Michael,Nagl MaximilianORCID,Rösch Daniel

Abstract

AbstractThe calibration of financial models is laborious, time-consuming and expensive, and needs to be performed frequently by financial institutions. Recently, the application of artificial neural networks (ANNs) for model calibration has gained interest. This paper provides the first comprehensive empirical study on the application of ANNs for calibration based on observed market data. We benchmark the performance of the ANN approach against a real-life calibration framework that is in action at a large financial institution. The ANN based calibration framework shows competitive calibration results, roughly four times faster with less computational efforts. Besides speed and efficiency, the resulting model parameters are found to be more stable over time, enabling more reliable risk reports and business decisions. Furthermore, the calibration framework involves multiple validation steps to counteract regulatory concerns regarding its practical application.

Funder

Universität Regensburg

Publisher

Springer Science and Business Media LLC

Subject

Economics, Econometrics and Finance (miscellaneous),Finance

Reference32 articles.

1. Bayer, C., Horvath, B., Muguruza, A., Stemper, B., & Tomas, M. (2019). On deep calibration of (rough) stochastic volatility models. Working Paper. arXiv:1908.08806.pdf.

2. Bayer, C. & Stemper, B. (2018). Deep calibration of rough stochastic volatility models. Working Paper. arXiv:1810.03399.

3. Bishop, C. (2006). Pattern recognition and machine learning. Information science and statistics. New York: Springer.

4. Culkin, R., & Das, S. R. (2017). Machine learning in finance: The case of deep learning for option pricing. Journal of Investment Management, 15(4), 92–100.

5. Cybenko, G. (1989). Approximation by superpositions of a sigmoidal function. Mathematics of Control, Signals and Systems, 2, 301–314.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3