1. Walkins, C.J.: Learning from delayed rewards. PhD thesis, Cambridge University. (1989)
2. Jin, C., Yang, Z., Wang, Z., Jordan, M.I.: Provably efficient reinforcement learning with linear function approximation. In: Abernethy, J., Agarwal, S. (eds.) Proceedings of Thirty Third Conference on Learning Theory. Proceedings of Machine Learning Research, vol. 125, pp. 2137–2143. (2020). https://proceedings.mlr.press/v125/jin20a.html
3. Ouyang, Y., Gagrani, M., Nayyar, A., Jain, R.: Learning unknown Markov decision processes: a Thompson sampling approach. arXiv preprint arXiv:1709.04570 (2017)
4. Ouyang, Y., Gagrani, M., Nayyar, A., Jain, R.: Learning unknown markov decision processes: a thompson sampling approach. In: 31st Conference on Neural Information Processing Systems, Long Beach, CA, USA (2017)
5. Jaksch, T., Ortner, R., Auer, P.: Near-optimal regret bounds for reinforcement learning. J. Mach. Learn. Res. 11(4), 1563–1600 (2010)