Wood decay fungi: an analysis of worldwide research

Author:

Li Tong,Cui Lizhen,Song Xiufang,Cui Xiaoyong,Wei Yulian,Tang Li,Mu Yanhong,Xu Zhihong

Abstract

Abstract Purpose Wood decay fungi are the only forms of life capable of degrading wood to its initial constituents, greatly contributing to the soil ecosystem. This study summarizes the current research status and development characteristics of global wood decay fungi research, in order to better understand their role in soils. Methods A bibliometric analysis was applied to the literature from 1913 to 2020, based on data from the Web of Science (WOS) Core Collection. For this, various bibliometric analysis methods, R (Biblioshiny package), and VOSviewer were applied. Results A total of 8089 documents in this field were identified in the WOS Core Collection. The annual number of publications tended to increase, with exponential growth after 2008. Researchers in this field were mainly concentrated in North Europe, the USA, and China. Biotechnology, applied microbiology, environmental sciences, and microbiology were the most popular WOS categories. Bioresource Technology and Applied Environmental Microbiology were the top two journals with the most citations. The top three authors with the most published papers were Dai YC, Martinez AT, and Cui BK. Co-occurrence analysis of author keywords identified six clusters, mainly divided into three categories: the classification and diversity, the degradation mechanisms, and the ecological functions of wood decay fungi. Clustering results further showed that the lignin degradation process and the application of wood decay fungi in industrial production and soil contamination remediation are current research hotspots. Conclusions We present a comprehensive and systematic overview of research related to wood decay fungi and provide a deep perspective to understand the associated research progress. This is important for facilitating the development of a profound understanding of the contribution of wood decay fungi to soil systems and the degradation of soil contaminants.

Funder

the CAS Strategic Priority Research Program

National Natural Science Foundation of China

Griffith University

Publisher

Springer Science and Business Media LLC

Subject

Stratigraphy,Earth-Surface Processes

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3