Leveraging Greenhouse Gas Emissions Traceability in the Groundnut Supply Chain: Blockchain-Enabled Off-Chain Machine Learning as a Driver of Sustainability

Author:

El Hathat ZakariaORCID,Venkatesh V. G.ORCID,Sreedharan V. RajaORCID,Zouadi TarikORCID,Manimuthu ArunmozhiORCID,Shi YangyanORCID,Srinivas S. SrivatsaORCID

Abstract

AbstractAs emphasized in multiple United Nations (UN) reports, sustainable agriculture, a key goal in the UN Sustainable Development Goals (SDGs), calls for dedicated efforts and innovative solutions. In this study, greenhouse gas (GHG) emissions in the groundnut supply chain from the region of Diourbel & Niakhar, Senegal, to the port of Dakar are investigated. The groundnut supply chain is divided into three steps: cultivation, harvesting, and processing/shipping. This work adheres to UN guidelines, addressing the imperative for sustainable agriculture by applying machine learning-based predictive modeling (MLPMs) utilizing the FAOSTAT and EDGAR databases. Additionally, it provides a novel approach using blockchain-enabled off-chain machine learning through smart contracts built on Hyperledger Fabric to secure GHG emissions storage and machine learning’s predictive analytics from fraud and enhance transparency and data security. This study also develops a decision-making dashboard to provide actionable insights for GHG emissions reduction strategies across the groundnut supply chain.

Publisher

Springer Science and Business Media LLC

Reference39 articles.

1. Aikins, E. F., & Ramanathan, U. (2020). Key factors of carbon footprint in the UK food supply chains: A new perspective of life cycle assessment. International Journal of Operations & Production Management, 40(7/8), 945–970. https://doi.org/10.1108/ijopm-06-2019-0478

2. Boehm, R., Wilde, P., Ploeg, M. V., Costello, C., & Cash, S. B. (2018). A comprehensive life cycle assessment of greenhouse gas emissions from U.S. household food choices. Food Policy, 79, 67–76. https://doi.org/10.1016/j.foodpol.2018.05.004

3. Centobelli, P., Cerchione, R., Vecchio, P. D., Oropallo, E., & Secundo, G. (2022). Blockchain technology for bridging trust, traceability and transparency in circular supply chain. Information & Management, 59(7). https://doi.org/10.1016/j.im.2021.103508

4. Chanson, M., Bogner, A., Bilgeri, D., Fleisch, E., & Wortmann, F. (2019). Blockchain for the IoT: Privacy-preserving protection of sensor data. Journal of the Association for Information Systems, 20(9), 1274–1309. https://doi.org/10.17705/1jais.00567

5. Crippa, M., Guizzardi, D., Butler, T., Keating, T., Wu, R., Kaminski, J. W., Kuenen, J., Kurokawa, J., Chatani, S., Morikawa, T., Pouliot, G., Racine, J., Moran, M. D., Klimont, Z., Manseau, P. M., Mashayekhi, R., Henderson, B. H., Smith, S., Suchyta, H., & Foley, K. M. (2023). The HTAP_v3 emission mosaic: Merging regional and global monthly emissions (2000–2018) to support air quality modelling and policies. Earth System Science Data, 15(6), 2667–2694. https://doi.org/10.5194/essd-15-2667-2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3