Metallurgical and Mechanical Properties of Friction Stir-Welded Pure Titanium

Author:

Regev Michael,Spigarelli Stefano

Abstract

AbstractCommercially pure titanium (CP-Ti) plates were friction stir welded (FSWed) using a welding tool with a tungsten carbide (WC) pin. The bead-on-plate technique was applied to reduce the effects of welding defects, such as incomplete penetration. Whereas many papers have reported on creep studies of CP-Ti as well as on FSW of CP-Ti, no paper has investigated the creep behavior of a CP-Ti FSW’ed joint. Consequently, the current study focuses on this topic. The current paper, which is part of a broader research project, focuses on the metallurgical processes occurring during the creep of a FSW’ed CP-Ti joint at the temperature range of 550-650 °C. Based on the current study and previous results obtained by the authors, it can be concluded that the weld is not the weakest link. In every case, necking and creep fracture occurred in the parent material (PM), rather than either the thermomechanically affected zone (TMAZ) or the stir zone (SZ), indicating that both zones are more creep-resistant than the parent material. Fractography showed that the fracture surface was typical of creep fracture and that the fracture mechanism was microvoid coalescence and also ruled out any preexisting defect. TEM study of broken crept specimens revealed randomly distributed dislocations but no evidence of grain refinement, hence leading to the conclusion that dislocation glide was the dominant creep mechanism. The technological implication of the current study is that the welding process is safe for use as far as its creep properties are concerned.

Funder

Braude College of Engineering

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3