Influence of additives on strength enhancement and greenhouse gas emissions of pre-cast lime-based construction products

Author:

O’Flaherty F. J.ORCID,Khalaf F. J.ORCID,Starinieri V.ORCID

Abstract

AbstractStrength properties of laboratory scale lime-based samples enhanced with additives such as nanomaterials (nanofibrillated cellulose, nanosilica, nanoclay, expanded graphite), hemp & glass fibres, hemp shiv and polyvinyl acetate (PVAc) are determined. Samples were cured for 26 days in air at 20˚C / 60% RH after casting before being oven dried for a further two days at 50˚C (28 days total). Results show that the nanomaterials on their own had a mixed effect on the strength although nSiO2 as a solo additive performed exceptionally well. The combination of fibres in conjunction with PVAc also greatly enhanced the strength due to increased bond between the fibres and the matrix. In addition, Greenhouse Gas emissions (GHG, kgCO2eq) of an arbitrary block was determined for all composites and compared to the GHG of a commonly used lightweight aerated concrete block. Comparison of the normalised compressive strengths to the different loading conditions as outlined in BS EN 8103 shows that a more widespread use of pre-cast lime composites is possible and without unduly increasing GHG emissions.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3