Novel strategy of senescence elimination via toxicity-exempted kinome perturbations by nanoliposome-based thermosensitive hydrogel for osteoarthritis therapy

Author:

Wan Junlai,He Zhiyi,Zhao Yingchao,Hao Xiaoxia,Cui Jiarui,Chen Anmin,Zhou Jun,Zhang Jiaming

Abstract

AbstractCellular senescence and the senescence-associated secretory phenotype (SASP) have been implicated in osteoarthritis (OA). This study aims to determine whether multi-kinase inhibitor YKL-05-099 (Y099) has potential in senescence elimination and OA therapy and whether delivering Y099 by nanoliposmal hydrogel improves the performance of the kinase inhibitor. Y099 inhibited IL-1β-induced inflammation and catabolism and promoted anabolism of chondrocytes. To attenuate the inhibition of cell viability, nanoliposomal Y099-loaded thermosensitive hydrogel (Y099-Lip-Gel) was developed for sustained release and toxicity exemption. Notably, Y099-Lip-Gel exhibited a pronounced effect on promoting anabolism and suppressing catabolism and inflammation without causing the inhibition of chondrocyte viability. Moreover, Y099-Lip-Gel remarkably increased the master regulator of chondrocyte phenotype Sox9 expression. After four intra-articular injections of Y099-Lip-Gel in the OA murine model, the histological lesions of cartilage were attenuated by Y099-Lip-Gel with subchondral bone loss and osteoclast formation inhibited. Transcriptomic analysis and experimental validations revealed that Y099-Lip-Gel suppressed cellular senescence by inhibiting the expression of senescence inducers and SASP factors. Furthermore, the phosphoproteomic analysis showed that Y099-Lip-Gel exerted a significant influence on kinome phosphorylation, inhibiting the MAPK and NF-κB signaling activations. The protective effects of Y099-Lip-Gel were also validated in cultured human OA cartilage explants. In conclusion, nanoliposomal Y099-loaded thermosensitive hydrogel has considerable potential in OA therapy. Nanoliposome-based hydrogel system has strength in reducing kinase inhibition-induced cytotoxicity, enhancing cellular tolerance to kinome perturbation, and improving the performance of protein kinase inhibitors. Senescence elimination via toxicity-exempted kinome perturbations achieved by advanced nanotechnology is a promising strategy for OA. Graphical Abstract

Funder

National Natural Science Foundation of China

Grants-in-Aid for Research Activity Start-up

Publisher

Springer Science and Business Media LLC

Subject

Materials Chemistry,Polymers and Plastics,Materials Science (miscellaneous),Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3