Mechanisms of mercury removal from water with highly efficient MXene and silver-modified polyethyleneimine cryogel composite filters

Author:

Daulbayev Chingis,Nursharip Armanbek,Tauanov Zhandos,Busquets Rosa,Baimenov Alzhan

Abstract

AbstractSafeguarding aquatic ecosystems and human health requires effective methods for removing pollutants. Mercury (Hg) is a very toxic pollutant with a global presence and is highly mobile and persistent. Here, innovative materials were prepared for separating Hg(II) from water, and the mechanisms underlying the efficient uptake of Hg species have been investigated. The sorbents include silver (Ag) nanoparticles and multilayered Ti3C2Tx MXene, both incorporated into the structure of a three-dimensional polyethyleneimine porous cryogel (PEI) that acts as a scaffold holding and exposing nano active sites involved in the removal of Hg. Specifically, Ag particles were deposited onto MXene phases, and the resulting composite was embedded in the macroporous PEI polymer (PEI/MXene@Ag cryogel). The composite has beneficial properties regarding Hg removal: 99% of Hg was separated from waste within 24 h in batch studies. The maximum removal capacity of Hg reached 875 mg/g from HgCl2, and 761 mg/g and 1280 mg/g from Hg(OAc)2 and Hg(NO3)2 salts by PEI/MXene@Ag. The Hg uptake stems from the composite’s relatively large specific surface area, layered porous channels, and highly dispersed Ag nanoparticles in the multilayered Ti3C2Tx MXene. The matrix in the water samples that were treated with the composite did not hinder the uptake of Hg by PEI/MXene@Ag. The high effectiveness achieved for the removal of Hg, combined with rapid adsorption kinetics, high efficiency, and selectivity, positions it as an efficient solution. Future work should address upscaling its preparation for increasing readiness towards mitigating Hg in surface water.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3