Modulation of soleus muscle H-reflexes and ankle muscle co-contraction with surface compliance during unipedal balancing in young and older adults

Author:

Alizadehsaravi Leila,Bruijn Sjoerd M.,Maas Huub,van Dieën Jaap H.ORCID

Abstract

AbstractThis study aimed to assess modulation of lower leg muscle reflex excitability and co-contraction during unipedal balancing on compliant surfaces in young and older adults. Twenty healthy adults (ten aged 18–30 years and ten aged 65–80 years) were recruited. Soleus muscle H-reflexes were elicited by electrical stimulation of the tibial nerve, while participants stood unipedally on a robot-controlled balance platform, simulating different levels of surface compliance. In addition, electromyographic data (EMG) of soleus (SOL), tibialis anterior (TA), and peroneus longus (PL) and full-body 3D kinematic data were collected. The mean absolute center of mass velocity was determined as a measure of balance performance. Soleus H-reflex data were analyzed in terms of the amplitude related to the M wave and the background EMG activity 100 ms prior to the stimulation. The relative duration of co-contraction was calculated for soleus and tibialis anterior, as well as for peroneus longus and tibialis anterior. Center of mass velocity was significantly higher in older adults compared to young adults ($$p<0.001)$$ p < 0.001 ) and increased with increasing surface compliance in both groups ($$p<0.001)$$ p < 0.001 ) . The soleus H-reflex gain decreased with surface compliance in young adults $$(p= 0.003)$$ ( p = 0.003 ) , while co-contraction increased $${(p}_{\mathrm{S}\mathrm{O}\mathrm{L},\mathrm{T}\mathrm{A}}=0.003\ \mathrm{a}\mathrm{n}\mathrm{d}\ {p}_{\mathrm{P}\mathrm{L},\mathrm{T}\mathrm{A}}<0.001)$$ ( p S O L , T A = 0.003 a n d p P L , T A < 0.001 ) . Older adults did not show such modulations, but showed overall lower H-reflex gains $$(p<0.001)$$ ( p < 0.001 ) and higher co-contraction than young adults $${(p}_{\mathrm{S}\mathrm{O}\mathrm{L},\mathrm{T}\mathrm{A}}<0.001\ \mathrm{a}\mathrm{n}\mathrm{d}\ {p}_{\mathrm{P}\mathrm{L},\mathrm{T}\mathrm{A}}=0.002)$$ ( p S O L , T A < 0.001 a n d p P L , T A = 0.002 ) . These results suggest an overall shift in balance control from the spinal level to supraspinal levels in older adults, which also occurred in young adults when balancing at more compliant surfaces.

Publisher

Springer Science and Business Media LLC

Subject

General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3