Preclinical Proof-of-Concept of a Minimally Invasive Direct Cardiac Compression Device for Pediatric Heart Support

Author:

Hord Erica C.ORCID,Hager Melanie P.ORCID,Bolch Christina M.ORCID,Bonugli Katherine,Guo Lee-JaeORCID,Tuzun Egemen,Criscione John C.ORCID

Abstract

Abstract Purpose For pediatric patients, extracorporeal membrane oxygenation (ECMO) remains the predominant mechanical circulatory support (MCS) modality for heart failure (HF) although survival to discharge rates remain between 50 and 60% for these patients. The device-blood interface and disruption of physiologic hemodynamics are significant contributors to poor outcomes. Methods In this study, we evaluate the preclinical feasibility of a minimally invasive, non-blood-contacting pediatric DCC prototype for temporary MCS. Proof-of-concept is demonstrated in vivo in an animal model of HF. Hemodynamic pressures and flows were examined. Results Minimally invasive deployment on the beating heart was successful without cardiopulmonary bypass or anticoagulation. During HF, device operation resulted in an immediate 43% increase in cardiac output while maintaining pulsatile hemodynamics. Compared to the pre-HF baseline, the device recovered up to 95% of ventricular stroke volume. At the conclusion of the study, the device was easily removed from the beating heart. Conclusions This preclinical proof-of-concept study demonstrated the feasibility of a DCC device on a pediatric scale that is minimally invasive and non-blood contacting, with promising hemodynamic support and durability for the initial intended duration of use. The ability of DCC to maintain pulsatile MCS without blood contact represents an opportunity to mitigate the mortality and morbidity observed in non-pulsatile, blood-contacting MCS.

Funder

National Capital Consortium for Pediatric Device Innovation

Publisher

Springer Science and Business Media LLC

Subject

Cardiology and Cardiovascular Medicine,Biomedical Engineering

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3