Biological effectiveness of very high gamma dose rate and its implication for radiological protection

Author:

Olofsson Dante,Cheng Lei,Fernández Rubén Barrios,Płódowska Magdalena,Riego Milagrosa López,Akuwudike Pamela,Lisowska Halina,Lundholm Lovisa,Wojcik AndrzejORCID

Abstract

AbstractMany experimental studies are carried out to compare biological effectiveness of high dose rate (HDR) with that of low dose rate (LDR). The rational for this is the uncertainty regarding the value of the dose rate effectiveness factor (DREF) used in radiological protection. While a LDR is defined as 0.1 mGy/min or lower, anything above that is seen as HDR. In cell and animal experiments, a dose rate around 1 Gy/min is usually used as representative for HDR. However, atomic bomb survivors, the reference cohort for radiological protection, were exposed to tens of Gy/min. The important question is whether gamma radiation delivered at very high dose rate (VHDR—several Gy/min) is more effective in inducing DNA damage than that delivered at HDR. The aim of this investigation was to compare the biological effectiveness of gamma radiation delivered at VHDR (8.25 Gy/min) with that of HDR (0.38 Gy/min or 0.79 Gy/min). Experiments were carried out with human peripheral mononuclear cells (PBMC) and the human osteosarcoma cell line U2OS. Endpoints related to DNA damage response were analysed. The results show that in PBMC, VHDR is more effective than HDR in inducing gene expression and micronuclei. In U2OS cells, the repair of 53BP1 foci was delayed after VHDR indicating a higher level of damage complexity, but no VHDR effect was observed at the level of micronuclei and clonogenic cell survival. We suggest that the DREF value may be underestimated when the biological effectiveness of HDR and LDR is compared.

Funder

Strålsäkerhetsmyndigheten

Stiftelsen Olle Engkvist Byggmästare

Publisher

Springer Science and Business Media LLC

Subject

General Environmental Science,Radiation,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3