Assessment of occupational exposure from radon in the newly formed underground tourist route under Książ castle, Poland

Author:

Fijałkowska-Lichwa LidiaORCID,Przylibski Tadeusz A.

Abstract

AbstractIn the present study, 222Rn activity concentrations in a newly formed underground tourist route under Książ castle, Poland, were investigated for periods undisturbed and disturbed by construction works. This preliminary assessment is based on the almost 3-year long continuous measurements (28 Oct. 2016–02 Jul. 2019) done with an SRDN-3 instrument. In detail described are radon concentrations for periods of renovation (11 Aug. 2018–10 Oct. 2018), opening (15 Oct. 2018–10 Apr. 2019) and operation and monitoring (11 Apr. 2019–02 Jul. 2019) of the facility. It was observed that after the termination of construction work, when natural ventilation returned to the state preceding this work, the absolute values of radon activity concentration decreased. The mean annual radon concentrations were higher than the reference level of radon concentration in underground spaces recommended by IAEA, ICRP, and by the EU Council Directive for workplaces. They reached 1179 Bq/m3 and 943 Bq/m3 in 2017 and 2018, respectively. Cyclically recurring daily changes in radon concentrations occurred only in April and October (so-called transitional periods) and only outside the period of construction work. The results confirmed; however, that these changes need not be considered when planning the work in the tunnel. The minimum effective dose rate from radon exposure occurs in colder periods of the year, from November to the end of March, where the mean effective dose rate value was found to be 0.0003 mSv/h. In contrast, the maximum dose rate of 0.014 mSv/h was observed from April to August.

Publisher

Springer Science and Business Media LLC

Subject

General Environmental Science,Radiation,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3