Author:
Burungale Ashay,Castella Francesc,Skinner Christopher,Tian Ye
Abstract
R\'esum\'eLet$$E/{\mathbb {Q}}$$E/Qbe a CM elliptic curve andpa prime of good ordinary reduction forE. We show that if$$\text {Sel}_{p^\infty }(E/{\mathbb {Q}})$$Selp∞(E/Q)has$${\mathbb {Z}}_p$$Zp-corank one, then$$E({\mathbb {Q}})$$E(Q)has a point of infinite order. The non-torsion point arises from a Heegner point, and thus$${{\,\mathrm{ord}\,}}_{s=1}L(E,s)=1$$ords=1L(E,s)=1, yielding ap-converse to a theorem of Gross–Zagier, Kolyvagin, and Rubin in the spirit of [49, 54]. For$$p>3$$p>3, this gives a new proof of the main result of [12], which our approach extends to all primes. The approach generalizes to CM elliptic curves over totally real fields [4].
Publisher
Springer Science and Business Media LLC
Reference54 articles.
1. Adebisi Agboola and Benjamin Howard. Anticyclotomic Iwasawa theory of CM elliptic curves. Ann. Inst. Fourier (Grenoble), 56(4):1001–1048, 2006.
2. Trevor Arnold. Anticyclotomic main conjectures for CM modular forms. J. Reine Angew. Math., 606:41–78, 2007.
3. Ashay Burungale, Francesc Castella, and Chan-Ho Kim. A proof of Perrin-Riou’s Heegner point main conjecture. Algebra Number Theory, 15(7):1627–1653, 2021.
4. Ashay A. Burungale, Francesc Castella, Christopher Skinner, and Ye Tian. $$p$$-converse to a theorem of Gross–Zagier and Kolyvagin: CM elliptic curves over totally real fields. 2021. preprint.
5. Ashay A. Burungale and Daniel Disegni. On the non-vanishing of $$p$$-adic heights on CM abelian varieties, and the arithmetic of Katz $$p$$-adic $$L$$-functions. Ann. Inst. Fourier (Grenoble), 70(5):2077–2101, 2020.
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献