Abstract
AbstractUsing the classification of Clifford algebras and Bott periodicity, we show how higher geometric algebras can be realized as matrices over classical low dimensional geometric algebras. This matrix representation allows us to use standard geometric algebra software packages more easily. As an example, we express the geometric algebra for conics (GAC) as a matrix over the Compass ruler algebra (CRA).
Funder
Vysoké Učení Technické v Brně
Brno University of Technology
Publisher
Springer Science and Business Media LLC
Reference31 articles.
1. Ablamowicz, R., Fauser, B.: Mathematics of Clifford - a Maple package for Clifford and Graßmann algebras. Adv. Appl. Clifford Algebras 15, 157–181 (2005). https://doi.org/10.1007/s00006-005-0009-9
2. Breuils, S., Nozick, V., Sugimoto, A., Hitzer, E.: Quadric conformal geometric algebra of $$\mathbb{R} ^{9,6}$$. Adv. Appl. Clifford Algebras 28(35), 1–16 (2018)
3. Breuils, S., Tachibana, K., Hitzer, E.: New applications of Clifford’s geometric algebra. Adv. Appl. Clifford Algebras 32, 17 (2022). https://doi.org/10.1007/s00006-021-01196-7
4. Byrtus, R., Derevianko, A., Vašík, P.: Outline of tube elbow detection based on GAC. In: Magnenat-Thalmann, N., et al. (eds.) Advances in Computer Graphics. CGI 2020. Lecture Notes in Computer Science, vol 12221. Springer, Cham (2020) https://doi.org/10.1007/978-3-030-61864-3_41
5. Derevianko, A., Vašík, P.: Solver-free optimal control for linear dynamical switched system by means of geometric algebra. Math. Meth. Appl. Sci. (2022). https://doi.org/10.1002/mma.8752