Grain by-products and Saccharomyces cerevisiae application in paper packaging material: impact on physical–mechanical and barrier properties

Author:

Markevičiūtė Zita,Lyytikäinen Johanna,Leminen Ville,Varžinskas Visvaldas

Abstract

AbstractRenewable materials and material circularity are key priorities for the coming decades. While paper is the most utilized material in the packaging sector, its applications in food packaging are limited due to low barrier properties. Coating it with petroleum-based polymer barrier coatings renders it unrecyclable both mechanically and biologically. Bio-coated paper packaging, made from agricultural waste or by-products, presents environmentally favorable solutions that can benefit the biological cycle of the circular economy. The main objective of this study is to assess the applicability of grain and beer production by-products in wood pulp food packaging materials. It examines the effects of different grain by-products (industrial wheat grain processing residues and wheat bran) particles and concentrations (15 wt% and 40 wt%), as well as the impact of brewer’s yeast (Saccharomyces cerevisiae) at a concentration of 10 wt%, on the physical–mechanical and barrier properties of Northern bleached softwood kraft (NBSK) and chemithermomechanical (CTMP) pulps. Material composites were fabricated using a standard sheet forming method. Physical–mechanical properties were analyzed through tensile strength, strain at break, tear resistance, and bending stiffness tests. Barrier-related properties were analyzed through roughness, air permeance, and water contact angle tests. Results revealed that the vast majority of physical–mechanical properties decreased with the increase of both types of grain production fillers. Industrial wheat grain processing residues had a lower impact on physical–mechanical properties than wheat bran filler. A higher percentage of property decrease was absorbed in NBSK pulp than in CTMP. Roughness of CTMP can be improved by adding both industrial wheat grain processing residues and wheat bran. Wheat bran particles can increase hydrophobicity. CTMP pulp strength properties can be increased with the addition of yeast; however, the yeast additive’s effect on air permeance demonstrated a negative impact. In the case of NBSK pulp, which has higher primary strength properties, the addition of yeast does not make any significant changes. The conducted experiments demonstrated that, overall, the addition of these fillers resulted in a decline in physical–mechanical properties such as tensile strength, strain at break, tear resistance, and bending stiffness. This decline was more pronounced with higher concentrations of fillers. In the case of CTMP pulp, both types of fillers exhibited similar trends in affecting properties, whereas for NBSK pulp, wheat bran had a more significant impact compared to wheat grain processing residues. The addition of yeast generally led to a reduction in physical–mechanical properties, particularly in tensile strength and tear resistance. However, samples containing yeast displayed increased flexibility compared to controls. The influence on barrier properties varied: while yeast increased air permeability, it also enhanced surface hydrophobicity, thereby reducing the paper’s receptivity to liquids.

Publisher

Springer Science and Business Media LLC

Reference45 articles.

1. Markevičiūtė Z, Varžinskas V. Smart material choice: the importance of circular design strategy applications for bio-based food packaging preproduction and end-of-life life cycle stages. Sustainability. 2022;14:6366.

2. Kachook O, Cramer K, Gendell A. Understanding the role of compostable packaging in North America. Charlottesville: Sustainable Packaging Coalition; 2021.

3. van den Oever M, Molenveld K, van der Zee M, Bos H. Bio-based and biodegradable plastics—facts and figures. Wageningen: Wageningen Food & Biobased Research; 2017. p. 1722.

4. United Nations Environment Programme (2022). Single-use Supermarket Food Packaging and its alternatives: recommendations from life cycle assessments. 2023. https://wedocs.unep.org/20.500.11822/41543. Accessed 8 Apr 2023.

5. Kumar S, Ye F, Dobretsov S, Dutta J. Chitosan nanocomposite coatings for food, paints, and water treatment applications. Appl Sci. 2019;9:2409.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3