Critical review on in silico methods for structural annotation of chemicals detected with LC/HRMS non-targeted screening

Author:

Hupatz Henrik,Rahu IdaORCID,Wang Wei-Chieh,Peets Pilleriin,Palm Emma H.,Kruve Anneli

Abstract

AbstractNon-targeted screening with liquid chromatography coupled to high-resolution mass spectrometry (LC/HRMS) is increasingly leveraging in silico methods, including machine learning, to obtain candidate structures for structural annotation of LC/HRMS features and their further prioritization. Candidate structures are commonly retrieved based on the tandem mass spectral information either from spectral or structural databases; however, the vast majority of the detected LC/HRMS features remain unannotated, constituting what we refer to as a part of the unknown chemical space. Recently, the exploration of this chemical space has become accessible through generative models. Furthermore, the evaluation of the candidate structures benefits from the complementary empirical analytical information such as retention time, collision cross section values, and ionization type. In this critical review, we provide an overview of the current approaches for retrieving and prioritizing candidate structures. These approaches come with their own set of advantages and limitations, as we showcase in the example of structural annotation of ten known and ten unknown LC/HRMS features. We emphasize that these limitations stem from both experimental and computational considerations. Finally, we highlight three key considerations for the future development of in silico methods. Graphical Abstract

Funder

H2020 European Research Council

Horizon 2020 Framework Programme

Carl Tryggers Stiftelse för Vetenskaplig Forskning

Vetenskapsrådet

Stockholm University Center for Circular and Sustainable Systems

Deutsche Forschungsgemeinschaft

Stockholm University

Publisher

Springer Science and Business Media LLC

Reference116 articles.

1. Black G, Lowe C, Anumol T, Bade J, Favela K, Feng Y-L, Knolhoff A, Mceachran A, Nuñez J, Fisher C, Peter K, Quinete NS, Sobus J, Sussman E, Watson W, Wickramasekara S, Williams A, Young T. Exploring chemical space in non-targeted analysis: a proposed ChemSpace tool. Anal Bioanal Chem. 2023;415:35–44. https://doi.org/10.1007/s00216-022-04434-4.

2. Renner G, Reuschenbach M. Critical review on data processing algorithms in non-target screening: challenges and opportunities to improve result comparability. Anal Bioanal Chem. 2023;415:4111–23. https://doi.org/10.1007/s00216-023-04776-7.

3. Hollender J, Schymanski EL, Ahrens L, Alygizakis N, Béen F, Bijlsma L, Brunner AM, Celma A, Fildier A, Fu Q, Gago-Ferrero P, Gil-Solsona R, Haglund P, Hansen M, Kaserzon S, Kruve A, Lamoree M, Margoum C, Meijer J, Merel S, Rauert C, Rostkowski P, Samanipour S, Schulze B, Schulze T, Singh RR, Slobodnik J, Steininger-Mairinger T, Thomaidis NS, Togola A, Vorkamp K, Vulliet E, Zhu L, Krauss M. NORMAN guidance on suspect and non-target screening in environmental monitoring. Environ Sci Eur. 2023;35:75. https://doi.org/10.1186/s12302-023-00779-4.

4. Hulleman T, Turkina V, O’Brien JW, Chojnacka A, Thomas KV, Samanipour S. Critical Assessment of the Chemical Space Covered by LC–HRMS Non-Targeted Analysis. Environ Sci Technol. 2023;57:14101–12. https://doi.org/10.1021/acs.est.3c03606.

5. Manz KE, Feerick A, Braun JM, Feng Y-L, Hall A, Koelmel J, Manzano C, Newton SR, Pennell KD, Place BJ, Godri Pollitt KJ, Prasse C, Young JA. Non-targeted analysis (NTA) and suspect screening analysis (SSA): a review of examining the chemical exposome. J Expo Sci Environ Epidemiol. 2023;33:524–36. https://doi.org/10.1038/s41370-023-00574-6.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3