In-line sample concentration in capillary electrophoresis by cyclodextrin to admicelle microextraction

Author:

Vaas Andaravaas Patabadige Jude P.,Yu Raymond B.,Quirino Joselito P.

Abstract

Abstract Cyclodextrins (CDs) as a pseudophase in pseudophase-to-pseudophase microextraction (P2ME) in capillary zone electrophoresis (CZE) are proposed. In this P2ME mode called CD to admicelle ME, a long plug of dilute analyte solution prepared in cetyltrimethylammonium bromide (CTAB) at the critical micellar concentration was injected into the capillary. This formed CTAB admicelles at the interface between the solution and the negatively charged capillary surface, where the analytes were trapped. The injection of CD solution released the admicelles and the analytes from the capillary surface due to the formation of stable CD/CTAB inclusion complexes. The analytes are concentrated at the CD front during injection and voltage separation. Various neutral CDs were found to be effective for CD to admicelle ME. To implement this in-line sample concentration technique in CZE, CD concentration, sample injection time, and sample:CD solution injection ratio were optimized. The optimized conditions for five model anionic analytes, namely, 4-bromophenol, sulindac, sulfamethizole, 4-vinylbenzoic acid, and succinylsulfathiazole, were 20 mM α-CD in 20 mM sodium tetraborate (pH 9.2) solution, sample injection time of 370 s, and CD:sample injection ratio of 1:2. The sensitivity enhancement factors (SEFs) were between 112 and 168. The SEFs of sulindac and sulfamethizole in particular were similar to previously published off-line microextraction techniques, which are typically time-consuming. The calculated values of LOQ, intra-/inter-day (n = 6/n = 10, 3 days) repeatability, and linearity (R2) of CD to admicelle ME were 0.0125–0.05 µg/mL, 1.5–4.6%, 1.8–4.8%, and ≥0.999, respectively. Finally, the potential of CD to admicelle ME to the analysis of artificial urine samples was demonstrated.

Funder

Australian Research Council

University of Tasmania

Publisher

Springer Science and Business Media LLC

Subject

Biochemistry,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3