Satellite Gravimetry: A Review of Its Realization

Author:

Flechtner FrankORCID,Reigber Christoph,Rummel Reiner,Balmino Georges

Abstract

AbstractSince Kepler, Newton and Huygens in the seventeenth century, geodesy has been concerned with determining the figure, orientation and gravitational field of the Earth. With the beginning of the space age in 1957, a new branch of geodesy was created, satellite geodesy. Only with satellites did geodesy become truly global. Oceans were no longer obstacles and the Earth as a whole could be observed and measured in consistent series of measurements. Of particular interest is the determination of the spatial structures and finally the temporal changes of the Earth's gravitational field. The knowledge of the gravitational field represents the natural bridge to the study of the physics of the Earth's interior, the circulation of our oceans and, more recently, the climate. Today, key findings on climate change are derived from the temporal changes in the gravitational field: on ice mass loss in Greenland and Antarctica, sea level rise and generally on changes in the global water cycle. This has only become possible with dedicated gravity satellite missions opening a method known as satellite gravimetry. In the first forty years of space age, satellite gravimetry was based on the analysis of the orbital motion of satellites. Due to the uneven distribution of observatories over the globe, the initially inaccurate measuring methods and the inadequacies of the evaluation models, the reconstruction of global models of the Earth's gravitational field was a great challenge. The transition from passive satellites for gravity field determination to satellites equipped with special sensor technology, which was initiated in the last decade of the twentieth century, brought decisive progress. In the chronological sequence of the launch of such new satellites, the history, mission objectives and measuring principles of the missions CHAMP, GRACE and GOCE flown since 2000 are outlined and essential scientific results of the individual missions are highlighted. The special features of the GRACE Follow-On Mission, which was launched in 2018, and the plans for a next generation of gravity field missions are also discussed.

Funder

Helmholtz-Zentrum Potsdam Deutsches GeoForschungsZentrum - GFZ

Publisher

Springer Science and Business Media LLC

Subject

Geochemistry and Petrology,Geophysics

Reference226 articles.

1. Abalakin V, Balmino G, Lambeck K, Moritz H, Mulholland JD, Tozer F (1974) La Geodynamique Spatiale, Summer School Lecture Notes, Centre Nationale D'Etudes Spatiales, 20.8–13.9. 1974, Lannion

2. Abich K, Abramovici A, Amparan B, Baatzsch A, Okihiro BB, Barr DC, Bize MP, Bogan C, Braxmaier C, Burke MJ, Clark KC, Dahl C, Dahl K, Danzmann K, Davis MA, de Vine G, Dickson JA, Dubovitsky S, Eckardt A, Ester T, Barranco GF, Flatscher R, Flechtner F, Folkner WM, Francis S, Gilbert MS, Gilles F, Gohlke M, Grossard N, Guenther B, Hager P, Hauden J, Heine F, Heinzel G, Herding M, Hinz M, Howell J, Katsumura M, Kaufer M, Klipstein W, Koch A, Kruger M, Larsen K, Lebeda A, Leikert T, Liebe CC, Liu J, Lobmeyer L, Mahrdt C, Mangoldt T, McKenzie K, Misfeldt M, Morton PR, Müller V, Murray AT, Nguyen DJ, Nicklaus K, Pierce R, Ravich JA, Reavis G, Reiche J, Sanjuan J, Schütze D, Seiter C, Shaddock D, Sheard B, Sileo M, Spero R, Spiers G, Stede G, Stephens M, Sutton A, Trinh J, Voss K, Wang D, Wang RT, Ware B, Wegener H, Windisch S, Woodruff C, Zender B, Zimmermann M (2019) In-orbit performance of the GRACE follow-on laser ranging interferometer. Phys Rev Lett 123:031101. https://doi.org/10.1103/PhysRevLett.123.031101

3. Albertella A, Savcenko R, Janjić T, Rummel R, Bosch W, Schröter J (2012) High resolution dynamic ocean topography in the Southern Ocean from GOCE. Geophys J Int 190:922–930. https://doi.org/10.1111/j.1365-246X.2012.05531.x

4. Alvarez O, Nacif S, Gimenez M, Folguera A, Braitenberg C (2014) GOCE derived vertical gravity gradient delineates great earthquake rupture zones along the Chilean margin. Tectonophysics 622:198–215. https://doi.org/10.1016/j.tecto.2014.03.011

5. Anderle RJ, Smith SJ (1968) Observation of the twenty-seventh and twenty-eighth order gravity coefficients based on Doppler observations. J Astronaut Sci 15:1–4

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Inter-satellite tracking methods and applications: A comprehensive survey;Advances in Space Research;2024-10

2. Earthquake prediction using satellite data: Advances and ahead challenges;Advances in Space Research;2024-10

3. Classical and Atomic Gravimetry;Remote Sensing;2024-07-18

4. Esa’s Efforts on Quantum Sensing for Space-Based Earth Observation;IGARSS 2024 - 2024 IEEE International Geoscience and Remote Sensing Symposium;2024-07-07

5. Satellite gravimetry: Methods, products, applications, and future trends;Earth-Science Reviews;2024-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3