Topology optimization using the discrete element method. Part 2: Material nonlinearity

Author:

Masoero EnricoORCID,O’Shaughnessy Connor,Gosling Peter D.,Chiaia Bernardino M.

Abstract

AbstractStructural Topology Optimization typically features continuum-based descriptions of the investigated systems. In Part 1 we have proposed a Topology Optimization method for discrete systems and tested it on quasi-static 2D problems of stiffness maximization, assuming linear elastic material. However, discrete descriptions become particularly convenient in the failure and post-failure regimes, where discontinuous processes take place, such as fracture, fragmentation, and collapse. Here we take a first step towards failure problems, testing Discrete Element Topology Optimization for systems with nonlinear material responses. The incorporation of material nonlinearity does not require any change to the optimization method, only using appropriately rich interaction potentials between the discrete elements. Three simple problems are analysed, to show how various combinations of material nonlinearity in tension and compression can impact the optimum geometries. We also quantify the strength loss when a structure is optimized assuming a certain material behavior, but then the material behaves differently in the actual structure. For the systems considered here, assuming weakest material during optimization produces the most robust structures against incorrect assumptions on material behavior. Such incorrect assumptions, instead, are shown to have minor impact on the serviceability of the optimized structures.

Funder

engineering and physical sciences research council

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3