Unveiling salinity-driven shifts in microbial community composition across compartments of naturally saline inland streams

Author:

Ayayee Paul A.ORCID,Custer Gordon F.,Tronstad Lusha M.,van Diepen Linda T. A.

Abstract

AbstractRiverine environments host diverse microbial communities, exhibiting distinctive assemblies at both microscopic and macroscopic levels. Despite the complexity of microbial life in rivers, the underlying factors that shape the community structure across different compartments remain elusive. Herein, we characterized microbial community composition of biofilm and planktonic (water column) compartments in five naturally saline inland streams and a freshwater stream to examine changes in microbial communities following salinization via sequencing of the microbial 16S rRNA gene. Significant differences in specific conductivity, oxidation–reduction potential, dissolved oxygen, and pH among the sampled streams were measured, as were significant differences in the microbial community composition between the planktonic and biofilm. The bacterial families Bacillaceae, Vicinamibacterceae, and Micrococcaceae were significantly more abundant in the biofilm compartment, while Methylophilaceae, Alcaligenaceae, Spirosomaceae, Burkholderiaceae, and Comamonadaceae were more abundant in the planktonic compartment. In addition, salinity (based on specific conductivity) influenced the microbial community composition in both compartments, with higher sensitivity of the planktonic compartment. Increases in the bacterial families Shewanellaceae, Marinomonadaceae, and Saccharospirillaceae or loss of Anaeromyxobacteraceae could be indicative of increased salinity within inland streams. Our results suggest that monitoring of microbial assemblages of freshwater ecosystems could be used as early warning signs of increased salinization levels.

Publisher

Springer Science and Business Media LLC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3