Salinisation of arid temporary pools alters crustacean hatching success but not phenology dynamics

Author:

Mungenge Chipo P.ORCID,Wasserman Ryan J.ORCID,Cuthbert Ross N.ORCID,Dondofema FaraiORCID,Dalu TatendaORCID

Abstract

AbstractThe widespread acceleration of freshwater salinisation due to human activities, such as pollution, resource extraction and urbanisation coupled with climate change, poses a significant threat to aquatic ecosystems. Limited work has been directed towards salinisation effects in temporary wetland systems. These systems are characterised by unique crustacean communities reliant on dormant egg production. We assessed salinisation effects on temporary wetland crustacean communities from semi–arid pans in the Khakhea–Bray Transboundary Aquifer region of South Africa using a laboratory–based approach. Sediment from pans containing crustacean resting eggs was exposed to water with varying salinities (0‒10 ppt), and emergent hatchlings were assessed over a 30–day hydroperiod. At salinities of 2.5 ppt and above, there were significant decreases in emergent taxa richness and abundance. Spinicaudata and Ostracoda were the most sensitive taxa to high salinities. Cladocera, Copepoda, Notostraca and Anostraca hatchlings had shallower decreases with salinity, but hatchability still fell rapidly. There was a limited effect on community hatching phenology dynamics from salinity, with all taxa showing reduced hatchability over time overall, with the exception of Cladocera which exhibited a clear unimodal response, peaking around 20 days post‒inundation. This suggests that the main impact of salinisation in these systems will be reductions in hatching success and hence reduced recruitment, leading to changes in predation pressures, food web structure and functioning of these ecosystems, with implications for associated ecosystem services.

Funder

Southern African Development Community-Groundwater Management Institute

National Research Foundation

Leverhulme Trust

Rhodes University

Publisher

Springer Science and Business Media LLC

Subject

Aquatic Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3