Projected Change in Temperature and Precipitation Over Africa from CMIP6

Author:

Almazroui MansourORCID,Saeed Fahad,Saeed Sajjad,Nazrul Islam M.,Ismail Muhammad,Klutse Nana Ama Browne,Siddiqui Muhammad Haroon

Abstract

Abstract We analyze data of 27 global climate models from the sixth phase of the Coupled Model Intercomparison Project (CMIP6), and examine projected changes in temperature and precipitation over the African continent during the twenty-first century. The temperature and precipitation changes are computed for two future time slices, 2030–2059 (near term) and 2070–2099 (long term), relative to the present climate (1981–2010), for the entire African continent and its eight subregions. The CMIP6 multi-model ensemble projected a continuous and significant increase in the mean annual temperature over all of Africa and its eight subregions during the twenty-first century. The mean annual temperature over Africa for the near (long)-term period is projected to increase by 1.2 °C (1.4 °C), 1.5 °C (2.3 °C), and 1.8 °C (4.4 °C) under the Shared Socioeconomic Pathways (SSPs) for weak, moderate, and strong forcing, referenced as SSP1-2.6, SSP2-4.5, and SSP5-8.5, respectively. The future warming is not uniform over Africa and varies regionally. By the end of the twenty-first century, the largest rise in mean annual temperature (5.6 °C) is projected over the Sahara, while the smallest rise (3.5 °C) is over Central East Africa, under the strong forcing SSP5-8.5 scenario. The projected boreal winter and summer temperature patterns for the twenty-first century show spatial distributions similar to the annual patterns. Uncertainty associated with projected temperature over Africa and its eight subregions increases with time and reaches a maximum by the end of the twenty-first century. On the other hand, the precipitation projections over Africa during the twenty-first century show large spatial variability and seasonal dependency. The northern and southern parts of Africa show a reduction in precipitation, while the central parts of Africa show an increase, in future climates under the three reference scenarios. For the near (long)-term periods, the area-averaged precipitation over Africa is projected to increase by 6.2 (4.8)%, 6.8 (8.5)%, and 9.5 (15.2)% under SSP1-2.6, SSP2-4.5, and SSP5-8.5, respectively. The median warming simulated by the CMIP6 model ensemble remains higher than the CMIP5 ensemble over most of Africa, reaching as high as 2.5 °C over some regions, while precipitation shows a mixed spatial pattern.

Publisher

Springer Science and Business Media LLC

Subject

Computers in Earth Sciences,Economic Geology,Geology,Environmental Science (miscellaneous),Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3